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Introduction

For the calculation of plates and shells are used mainly theories that are based on
assumptions and models [1, 2, 4, 5,9, 11, 12, 21, 23, 25, 26]. Such theories can well
describe certain classes of boundary value problems. But these classes need to be
outlined for each theory by comparing their solution with the exact one derived from
the three-dimensional equations of the theory of elasticity. The exact solution is
difficult to come by. Only in some isolated cases it is possible to accurately solve the
boundary value problem of the three-dimensional theory of elasticity [6, 14, 18]. To
determine the limits of suitability of each theory, you can also compare the results
with the solution of the corresponding boundary value problem, which is obtained on
the basis of different variants of mathematical theory (MT). Variants of mathematical
theories are based on the method of decomposition of the components of the stress-
strain state (SSS) into infinite mathematical series [3, 7, 8, 10, 13, 16, 17, 19, 27, 29—
35]. The construction of the three-dimensional problem of the theory of elasticity was
performed by variational or other methods. The effectiveness of variants of the MT of
plates and shallow shells depends on the methodology of construction of basic relations,
differential equations (DEs), boundary conditions on the lateral surface, on the exact or
approximate satisfaction of boundary conditions on the front faces. To evaluate the
effectiveness of variants of MT, comparisons are needed with the exact solution of the
three-dimensional theory of elasticity or with reliable variants of MT, which accurately
describe the internal SSS and marginal effects.

In [3, 7, 8, 16, 17, 19, 20, 27, 29-35] Legendre polynomials were used to
construct the basic equations. Reisner's variational principle [22] was used in [16, 19,
20, 21, 29-35]. In [20], the construction of the basic equations for a transversely
isotropic plate, which is obliquely transversely loaded with respect to the median

plane, was initiated. The components of displacements were taken in the form of two
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terms with Legendre polynomials. Interrelated equations were obtained.

In [29-33], a new variant of the MT of plates and shallow shells of arbitrary
constant thickness under the action of arbitrary transverse loads was developed. The
variant is based on the decomposition of all components of the SSS and boundary
conditions on the side surface into infinite mathematical series of Legendre
polynomials in the transverse coordinate. Three-dimensional DEs of the theory of
elasticity, the semi-inverted Saint-Venan method, the Reissner variational principle
are used to reduce the three-dimensional problem of the theory of elasticity to two-
dimensional. An important advantage over many other versions of the theory is that
the boundary conditions are accurately satisfied on the front faces. The constructed
basic dependences and equations of this variant of MT give a real opportunity to
obtain analytical solutions of boundary value problems that take into account
boundary effects. Numerical results obtained on the basis of the developed MT
variant for SSS of a wide class of boundary value problems show high accuracy of
the constructed theory in comparison with the exact solution taking into account the
first six terms of partial sums for tangential displacements [29, 30]. An increase in the
number of terms in the partial sums of mathematical series leads to an increase in the
order of inhomogeneous systems of differential equilibrium equations, to the
complication of basic equations, and to the complication of finding general solutions.

To date, there are few developed analytical methods for solving inhomogeneous
systems of differential equations of high-order equilibrium, which would simplify the

finding of partial and general solutions by methods of mathematical physics.

4.1. Statement of the problem and the idea of its solution

A transvepsally isotropic plate of arbitrary constant thickness, which is
subjected to arbitrary transverse loading, is considered. The isotropy plane coincides

with the median plane. Tangential rectangular coordinates x,y are located in the

middle plane, the transverse coordinate z is directed upwards perpendicular to it.
Boundary conditions on the side surface can be static, kinematic or mixed.

All SSS components and boundary conditions on the side surface are considered
functions of three variables and are represented by infinite mathematical series using

Legendre polynomials. If we take into account in tangential displacements
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components with indices 0, 1, 2,..., N (u,, vy, U;,.V, Wy,eeonly, .V, Wy ), Where N will
be considered an odd natural number, then such an approximation will be called an

approximation KO-N (AKO-N). If we take into account components with indices 1, 3

yeees N (Uy, v, Wysesly,.Vy, Wy ), then such an approximation will be called the
approximation K13... N (AK13 N).

The components of displacements in the KO-N approximation are represented by
Legendre polynomials in the form (1):

N N
U(X,y,Z) = kgopk(ZZ/h)uk(xﬂy)’(Uau - V,V);W(X,y,Z) = kz_:l})k—l(ZZ/h)Wk(xay)' (1)

The problem in the constructed variants of MT is to solve systems of DEs of
equilibrium of high orders and to construct their general solutions. The main
mathematical difficulty is finding general solutions of inhomogeneous systems of
equations of equilibrium of high orders, including finding their partial solutions.
Difficulties increase if the transverse load is intermittent or local.

In many works on the theory of plates and shells, general and partial solutions
were determined directly from the initial systems of equilibrium equations. In
particular, methods of integral transformations were used to find partial solutions [24,
28]. In some cases, it is almost impossible to use these methods due to the complex
and cumbersome inverse integral transformations, as it is necessary to find
cumbersome integrals with parameters that are not listed in the known literature. The
method of direct solution of the initial systems of equations of equilibrium of high
orders has led to significant difficulties [28].

The obtained systems of equilibrium equations of the constructed MT variant
have a rather high order. These are systems of equations with respect to the
components of displacements. In the approximation K0-3 the order of the system is
twenty-second. In the approximation K0-5 the order of the system is thirty-fourth.
Therefore, the direct analytical solution of such systems of equations is associated
with great difficulties.

A new method of integrating systems of high-order DEs is that the initial system
of high-order equilibria was reduced by algebraic, differential, and operator
transformations to convenient (solvable) inhomogeneous high-order differential
equations. These equations were reduced by the operator method to inhomogeneous

second-order DEs. This significantly reduced the difficulty of finding general
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solutions of the initial system of high-order equilibrium equations. Especially if the
transverse load was intermittent, or concentrated or local. General solutions of
inhomogeneous second-order DEs could be found by various known methods of
mathematical physics. The general solution of the initial system of differential
equilibrium equations was found through the general solutions of the second-order
equations. SSS was determined from the relevant dependencies based on the
solutions of the initial DE systems.

In [15] the inhomogeneous differential equation of the fourth order is reduced to
two inhomogeneous Helmholtz equations. Integral transformations were not applied
to the obtained equations. In [24], a partial solution of the fourth-order equilibrium
differential equations of the theory of thin isotropic spherical shells of small
curvature was found by direct application of the Hankel integral transformation. Even
for low-order DE, this led to sufficient mathematical complications.

The idea of the developed method is to simplify the definition of partial and
general solutions of high-order DEs. Simplification of the search for these solutions is
achieved by using methods of reduction of inhomogeneous DEs of high orders to
inhomogeneous equations of the second order. The work is a development and

generalization of researchs [30, 33-35].

4.2. Basic equations in the approximation K0-N

This section presents the components of SSS, DEs of equilibrium, boundary
conditions. The final DEs in the KO-N approximation are derived. General solutions

of the system of differential equilibrium equations are obtained.

4.2.1. Components of the stress-strain state.
The components of the displacements are depicted in the form (1).

Stress in the plate:

0032 = 3 P22/, (510, (5 0,2) = 3 B2/ h)E, (x.0):
N+2
o.(x,y,z2)= X F,(2z/h)s_,(x,y); (2)
n=0

N+2 N
o.(x,y,z) = ;013,1(22/h)sxn (x, ), (x,»); 0,,(x,y,2) = ;OPH(2Z/h)tyxn(x,y).
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In formulas (2), the functions ¢_,,. have the following form:

sl

N
L, (6,)= 2 (hy,Wi, +Hoitt;), (m=0,2,...,N +1);
i=1,3
N-1
L, (6,y)= 2 (hy,w,  +ly,u;), (n=13,.,N);
i=2,4

N-1 N-1
Szn(xny) = ) %4pniwi + . %2gni¢)i +gnpp9§0i: ui,x +Vi,y’ (I’l = 0929'"aN+1);
v )
Szn(xﬂy) = 23: pniwi + 21:3gni¢i +gnqq9 (71 = 173,'"9N+2);
i=3,5 i=l,

an(X,y) = dO(un,x + an,y) + leSzn ’ (l’l = O5laaN)9
S.,(x,)=dps,,, mn=N+1,N+2),
ten (x,y)= G(un,y +v,.), (n=0,1,.,N),

where s, [, p, g with indices - mechanical and geometric parameters; d, ,d,,,G -

mechanical parameters of the plate material. Mechanical and geometric parameters
will be called constant.

4.2.2. Differential equations of equilibrium.

Let us represent the equilibrium equation through wu,v,,u;, v, Wy,...,iy,Vy, Wy,

taking into account the expressions for ¢ ,,...,¢ ., according to (3), and performing

-
some mathematical transformations.

In the KO-N approximation, the system of differential equilibrium equations is of the
order of (6N+4). It is shown that this system of equations is divided into two separate
independent systems of equations. One system describes the SSS of a plate with symmetrical
deformation relative to the median plane. It occurs under a symmetrical load relative to the
median plane, which is applied both on the front faces and on the side surface.

Another system of equations describes SSS for obliquely symmetric
deformation. This is a purely bending deformation. It occurs when the obliquely
symmetrical load relative to the median plane, which is applied both on the front
faces and on the side surface. In all relations and equations it is necessary to take into
account only those terms in the components of displacements that are taken into
account in the partial sums of mathematical series for tangential components of
displacements (1). This also applies to boundary conditions.

It is established that in the approximation KO-N the system of differential
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equations for obliquely symmetric loading has the order of 3 (N+1), and for the
symmetric one - of the order of (3N+1).
DE system describing obliquely symmetric deformation (AK13... N):

Z (L, +L, v, +L,,w;)=L,qxy), ([ =12,..3(N+1)/2). (4)

= iujUj ivjiVj
DE system describing symmetrical deformation (AKO02... (N-1)):
Z M, u,+M, v.)+ Z M, w, =M, (p(x,y), (=L2,..,GN+1)/2). (5)

iu iv iw
j=0,2 J7T J / =2, J

In the systems of equations (4), (5) M, L, - differential operators not higher
than the 2nd order; M, (p), L, (q) - transverse load functions; these operators and

functions depend on the mechanical and geometric parameters of the plate.

4.2.3. Boundary conditions.

Boundary conditions follow from the Reisner variation equation and have the form:

(i) {]%12] +1 ((ijlx +tyxily _xsj)&/tj +(tyx11x +s, Z _ysj))&}j +
b (6)
;- 012]+ (tlex+t 1, —z,)0w ., }ds =0

Different boundary conditions follow from equation (6).

4.2.4. Oblique symmetric deformation of the plate

The methodology of reduction of systems of inhomogeneous equations of
equilibrium of high orders to inhomogeneous equations of the second order is given
for obliquely symmetric deformation of a plate.
4.2.4.1. Transformation of systems of differential equilibrium equations.
We transform the system of differential equations of equilibrium of skew-symmetric
deformation (4). Analyzing the structure of the operators of the system of equations
(4), we can reduce this system by mathematical transformations to the following
form:

jg} (i + Ay P T Ani W ) FayWi, = Buid x» (Ou,);

N (7)
j=21,3 (@niVi T ANip Py T Aniw Wiy) — AW = Buid > (0V), ((=13,...,N);
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N
P (legoj(Pj +Dy, wjvzwj) = B,14q, (6w);
j=13
2 ®)
(CNiwj +bNi wjv )Wj :ﬂwiqﬂ (5Wz)9(l = 3959:N)=

N

2
,Zl3bNi¢j(Pj +yi VW + S
j=1,

INE

J
where y;(x, y) - vortex functions:

v y)=u; ,—v; ., (j=12,.,N);
V2 =0%/ox* +0%*/0y> — Laplace operator; a,b,c s with indices are constants.

Variations in parentheses next to the equations indicate the variation in which the

equation is obtained.

The number of DE (7) is equal to (N+1), and DE (8) (N+1) / 2, The number of
DE system (7), (8) is equal to 3 (N+1) / 2. The same number of unknown functions
Uy, Vi, Wy, Us, V3, Wy, iy, Vy, Wy . We number the equation as follows: DE obtained
for du, is the first equation, for ov, is the second equation, for o u, is the third
equation, and so on.

To obtain a system of equations describing the vortex boundary effect, the
following steps from DE (7) must be performed. The first equation is differentiated

by y, the second equation by x and one equation is subtracted from another. The

third and fourth equations are similarly transformed, and so on. A homogeneous

system of order DE with respect to the vortex functions v ,,(j=13,...,N) is

obtained:
N
21:3H”V/](an7):Oa (1219 393N)9 (9)
]:’

where H,; (i=j) are second-order differential operators; and H, (i # j) zero-order

operators:

H, =(h,,V’ +hio, ), (=13, N); Hy j =l g, (# ]). (10)

Ly tj

h

P2y

In (10) /& with indices are constant parameters, 4 The differential matrix

ijoy — Moy -

of the system of equations (9) is symmetric: H,, =H;, (j=13,...,N), (i # j).

We now obtain a DE system that does not contain vortex functions and
describes internal SSS with a potential marginal effect. Let's convert equation (7)

again. Differentiate the first equation for the variable x, the second equation for the
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variable y and add them; we differentiate the third equation by x, the fourth
equation by y and add them, and so on. We obtain the following DE system:

J

N
> (i 0 +dip 12V +ds, VW) = B, Vg, (i=13,..,N), (11)

3,
where d with indices - constant values, which are determined by the parameters DE

(7).
From (8) and (11) we obtain an inhomogeneous DE system of order 2 (N+1)

with respect to the w; (x,y) functions:

N
2 M w6 p) = 11,q(x,p) (=13, N), (12)
Jj=1,

vty
where [7;; are fourth-order differential operators. [7;, — second-order differential
operators. All operators in (12) depend on mechanical and geometric parameters.
They are found to look like this:

Iy, = iy, VY 1, = ,U1j4v4 +lulj2v29 1, = ,Uj14v4 +/ujl2v29 (j=23..,N);
Il = ,ul.j4V4 +,ul.j2V2 + 450,05 ) =35, Nyi= ji# )11, = ,ul.ZV2 + 105 (13)
U145 fd: o— CTATIL.

Differential equations (9) and (12) will be called solvable DE of skew-

symmetric deformation. From these equations are the functions w;(x,y), w; (x,y),
(j=13,...,N). The ¢,(x, y) functions are determined from equations (8). Functions
u;(x,y), v,(x,y), are from equations (7) and are expressed through

@,;(x,¥),w; (x,¥), ¥,;(x,y). The stresses are according to formulas (2) and (3).

4.2.4.2. General solutions of differential equations of vortex boundary effect.
We reduce the system of equations of the vortex boundary effect (9) to the
convenient DE. We transform the system (9) by the operator method. Let us represent

the required functions y/,(x, y) through the new function y(x, y) as follows:

v, ()= HY v (), (j=13,.,N; N23), (14)
where H IOJ. are the adjuncts of the differential determinant H|, of the system (9).

The system of equations (9), taking into account (14), will be reduced to the
definition of the function y(x, y) from a homogeneous DE order (N+1).

Hy (x, )= (V=) (V=1y) s (V2 =1y ) W (x,1) =0, (15)
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where r with indices — parameters. Equation (15) will be called the defining

differential equation of the vortex boundary effect.

The general solution DE (15) is represented as:
(N+1)/2

vxny)= X v (x,3), (16)

where ?(x, y) are the general solutions of the Helmholtz differential equations
V=) y(x,y)=0, (i=12,.,(N+1)/2; N>1). (17)
General solutions for vortex functions y;(x, y) are obtained on the basis of (14)

—(17):

+1)/2

_ o Yo 18
v (x,y)=H; 21 i (x,y). (18)

4.2.4.3. General solutions of differential equations of internal stress state and
potential boundary effect.
Consider the system of equations (12), which describes the internal SSS and the

potential marginal effect. We represent the functions w; through the new required

functions @, (x,y) by the operator method:
N
wi(n)= 2 0 (67), (=13, N3 N 23), (19)

where 11 ,?j are adjuncts of the system determinant (12).

On the basis of (12), (13), (19) we obtain a convenient (determining) system of
DE with respect to functions @, (x,y), which after factorization of the left parts will

look like:

Dy Dy D, Dy -...- Dy @y (X, ) = a3 Dy q(x,); k=13,...,N; N=3, (20)
where
D, = Vz; D, = V? —8;5Dy = % —Sros 1=12,..,N—1; s,,8,0,0;,— parameters.

The system of differential equations (20) will be called hereinafter the determining
system of internal SSS and potential boundary effect.

The DE system (20) is more convenient than (12), because the left parts of this
system are the same. Forms of general solutions of the DE system (20) are obtained

in the form of:
D, (x,)=D, (X, 1)+ D, (x,y), (k=13,...,N), (21)
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where @, (x,y) are the general solutions of the corresponding homogeneous DEs of
the system (20), @, ,(x,y) are the partial solutions of the inhomogeneous DEs (20).
Since the homogeneous DE systems (20) are the same, we can put @, ,(x,y)=0,

(k=3)5,...,N) without increasing the order of this DE system. Then the general
solutions (20) taking into account (21) will take the form:

Dy(x,y) = Dyp(x,¥) + D7 (x, ¥) + D, (x,¥); Dp(x,y) =D, (x, ), (k=35,..,N).(22)
In formulas (22): @, , is the general solution of the biharmonic equation V*®, =0.
@, ; 1s the general solution of a homogeneous DE of order 2 (N-1):

@, , (x,y) are partial solutions of inhomogeneous DEs (20).

The general solution @, DE (23) 1s represented as:
N-1
D= T Bp(x.7), 24)
J=L
where Dy are  the  general  solutions of the  equations

(V2 =s)®; =0, (j=12,..,N-1).

The potential boundary effect is described by a homogeneous DE (23). Internal

SSS is determined by the sum of the general solution @, of the biharmonic equation

and the partial solutions @, , (k=1,3,..., N) of the inhomogeneous DE (20) of order 2
(N+1). Thus, the equations of domestic SSS and potential boundary effect are
separated.

The general solutions of the system of equations (12) based on (19), (22), (24)

are as follows:
N
w; (%, ) = I (D5 (X, ) + Py (x, ) + k_ZmH;?,-q)kr(x,y), (j=13,.,N). (25
The components of displacements u,,v,,(k =13,..., N) are determined from DE
(7):
N
u,(x,MV=>A_ .o +A4 wv. +A4 w )+A ,
k( y) 1221,3( k(ngpz,x kl//zl//z,y kwi t,x) qu,x (26)

(uk’(o,x’W,y’W,x’q,x Vi Py l//,x’way’q,y)’

N
where ¢,(x,y) = 4,V'w + X (4,V? +4)w, +4,q, (i=13,..,N), 1 with indices -
k=3,5
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parameters.
Stresses are determined on the basis of the corresponding formulas (2), (3)

through the components of displacements (25), (26).

4.3. Reduction of inhomogeneous differential equations to inhomogeneous

second-order equations

Consider DE of order 2n:
(4" + 4, V" 4+ 4)D(x ) = [ (x,p), 27)
where 4;# 0 is a constant value, f(x,y) is a known function, @(x,y) is a desired

function.
Equation (27) can always be reduced to an inhomogeneous equation of the

following form:
(V2 =k)(V2 =ky) oo (V2 =) oo (V2 =k, ) D(x, ) = [ (3, ), (28)
where k&, (i=1,2,..,n) - parameters, roots of the corresponding characteristic

equation.

The general solutions of homogeneous equations corresponding to equation (28)
are expressed through the general solutions of the Helmholtz equations.

The general solutions of inhomogeneous differential equations are represented
as the sum of the general solutions of the corresponding homogeneous equations and
the partial solutions of the inhomogeneous equations.

In the next section we consider some partial cases of equations (20) and (28).

In what follows, the general solutions of inhomogeneous differential equations
of high orders are expressed through the general solutions of inhomogeneous
equations of the second order. Therefore, in Section 3.1 we provide information on

general solutions of inhomogeneous second-order differential equations.

4.3.1. Inhomogeneous second-order differential equations.

1). Differential equations of the form:
DO@(Xﬁy):f(x:y)a(DO :vz)- (29)

The general solution of the Poisson differential equation (29): is
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D(x,y) = foo (x, )+ fy,(x,¥), where f,,(x,y) 1s the general solution of the
corresponding homogeneous DE, determined by the Lagrange method:
fooy) = F(y—ix) + Fy (y +ix), (i =+/=1),
where F|, F, are arbitrary functions of the corresponding arguments.
The partial solution f,, DE (29) is found by the Lagrange method using the

auxiliary equation and has the following form:

1 1
X, = X, =
Jor o) = o o ) = i

q,(x,y) = q,(x,y),

where

D=0/0x; D' =0/0y; 8*/0x*+0*/0y* =(D+iD")Y(D—-iD");

q,(x,y) =] f(x,c—ix)dx

c=y+ix;q2(-x9y) :J.QI(xac—l_ix)dx

c=y—ix ?

c under integrals is considered a constant value.

2). Inhomogeneous Helmholtz differential equations:

D, ®(x,y)= f(x,y);D, =V* —s,,i=12,..., (30)
where s; are constant values.

The partial solution f;, (x,y) of equation (30) is defined as follows:

VACH))
Sfir (6, )= b

1

The general solution of a homogeneous DE corresponding to equation (30) in

the class of exponential functions with separated variables has the form:
fio(x,»)=2C, exp(a,x+b,y),(n=123,..),

where C,; 1is arbitrary steels; a,, and b,, are constant values that satisfy the

ni

2 2 .
a,; +b;; =s;, equation.

4.3.2. Heterogeneous differential equations of the fourth order

1). Differential equations of the form:
DODO@(xay):f(xay) (31)
General solution DE (31): @(x,y) = fy00 (X, 1) + f50,(X, ).

The general solution f,,, (x,») of homogeneous DE D, D,®@(x,y) =0 has the
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form:

FoooGesy) = F (v —ix) + Fy (v +ix) + x Fy (y = ix) + X Fy (3 + i),

where F,...,F, are arbitrary functions from the corresponding variables.

The partial solution DE (31) is as follows:

1 1
X, y)= L(x,)= .
fOOr( ») D+iD'D—iD'f0 (x,») D+iD

~q3(x,¥) =q4(x,y),

where

g3 (x,y) = ffor(x:C—ix)dx

Partial solutions of the inhomogeneous DE (31) can also be found by sequential

c=y+ix;q4(x:y) = qu(x,C+iX)dx

c=y—ix *

integration of inhomogeneous equations of the second order:

Dy f1(x,y) = [ (x,3); Dy@(x,y) = f1 (x,¥).
Here, partial solutions can be used as solutions.
2). Differential equations of the form:

DzDz@(x’Y):f(an/)a (lzlsza) (32)
The partial solution f;,, (x,y) of equation (32) is determined by the sequential

integration of inhomogeneous Helmholtz differential equations:
D; f;(x,y) =f(x,y), D;®@(x,y) =f;, (x,). (33)
where f;,(x,y), f;;, — are the partial solutions of the first and second equations (33).

The general solution f;;, of the homogeneous equation, which corresponds to

equation (32), in the class of exponential functions has the form:
fi i0 (xﬂy) = ZC'nl exp(ani'x + bnzy) + xani exp(cnix + dniy)a (i’l = 19273a--°) s

where C

D, . 1s arbitrary steels; a,.,b, .,c,;,d,. - various constants that satisfy the

equation: a_, +b’, =s,,c., +d., =s,.
3). Differential equations of the form:
D;D; @(x,y)=f(x,y), (i # j; i,j =0,1,2,....). (34
The partial solution f; ;, (x,y) DE (34) is found by the operator method:

fe)_ U ff
DZD] _Dj_Di (Dl DJ) Sij (f;r f]r)a

.fijr(xsy)z

where  f; (x,y),f;, (x,y) are the partial solutions of the corresponding

inhomogeneous Helmholtz equations.
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Thus, partial solutions of inhomogeneous fourth-order DEs (32) and (34) are
expressed in terms of partial solutions of second-order inhomogeneous equations.

The general solution f;;, of the homogeneous equation corresponding to

equation (34) is expressed in terms of the general solutions of the Helmholtz

equations. In the class of exponential functions f;;, has the following form:
f;' i0 (x’y) = ZC,” eXp(ani'x + bnzy) +2Dni eXp(cm-x + dniy)9 (I’l = 19233a'-°) :

b,.,c,.,d . - constants that satisfy the equation:

ni>“ni*-ni’

where C,.,D, . is arbitrary steels; a

ni’

a +b2 =5.C> +d2:

i2>-ni j'
In the following sections, we present partial solutions of inhomogeneous

equations of order above the fourth.

4.3.3. Differential equations of the sixth order
Differential equations of the form:

2 e
Di D] ®(xay) :f(xay)a (l # Js LJ= 091923) (35)
Partial solution of this equation:
1
®r(x9 ) f(x y) - f f (/[1;” f]r) f]]r (36)

Partial solutions of this equation will be needed in the future to obtain partial
solutions of inhomogeneous equations of higher orders.

The partial solution (36) of DE (35) is also expressed in terms of the partial
solutions of inhomogeneous equations of the second order, taking into account the
partial solution of the inhomogeneous equation (34). The general solution of the
homogeneous equation corresponding to DR (35) is expressed in terms of the general

solutions of the Helmholtz equations.

4.3.4. Inhomogeneous differential equations of the eighth order.
1). Differential equations of the form:
Dy Dy D, D, ®(x,y) =f(x,y). (37)
Equations (37) are found in the variant of the mathematical theory of thick
plates on an elastic basis.
The partial solution @, (x,y) of this equation is a successive finding of the

partial solutions of the following equations:
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Dy f3(x,y) = f(x,9); D f2(x,¥) = f3,(x, »); Dy f1 (%, ¥) = f2, (%, 9); DD (x, ) = fi,(x, ).
2). Differential equations of the form:
Dy Dy D, D, @(x,y) =f(x,¥). (38)
Partial solution of equation (38):
1 2
D, (x,y) :T(fllr + /o0, —— U1 = f20))-
S12 512
Therefore, the general and partial solutions of the inhomogeneous equations of
Section 3.4, taking into account the previous paragraphs, are also expressed through

the general and partial solutions of the inhomogeneous equations of the second order.

4.3.5. Inhomogeneous differential equations of the twelfth order

1). Differential equations of the form:

Dy Dy Dy D,D3 Dy @y (x,) = @y Dy f (%, ), (k=1,3,5) , (39)
where D, , (k=13,5) is the Helmholtz differential operator.

The system of differential equations of internal SSS of plates with potential
boundary effect at obliquely symmetric deformation in the K135 approximation is

reduced to such equations. In [34], partial solutions of @,, of equations (39) are

obtained. They look like:

( r r) ( r r)
cDkr(xay):akol)kO( {i fO + {2 fO
51812813814 (52521573524)

n (]F3r_f0r) " (f4r_f0r) " fOOr ) (40)

2 2 ’
(53531532534)  (53541542543)  (51525354)

_|_

where 1, (x, ), foo, (X, 1), f;,.(x,¥) (i=1,2,3,4) are the partial solutions of the

corresponding inhomogeneous equations.

Thus, the partial solutions (40) of inhomogeneous DE (39) are expressed by the
differential operator from the linear combination of partial solutions of
inhomogeneous DE of the second order.

The general solutions of DE (39) are determined by the sum of:

Dy(3) = fooo 82+ X fo 0. )+ B (2.),

where f,,,(x,») is the general solution of the biharmonic DE; f;,(x,y) — general
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solutions of DE Helmholtz (V2 —s,) f,(x,y) =0, (s, —const).

2). Differential equations of the form:
D D{®(x,y) = f(x.) - (41)

Equations of the form (41) describe the internal SSS with a potential edge effect

with four times the root s, of the characteristic equation in the K135 approximation.

The partial solution of equation (41) has the form:

D, (x,y) = %(_%(ﬁr = for)+ L2(f00r + fi1r) _zﬁllr + fi)-
ST 81 81 51

Thus, the general solutions of inhomogeneous DEs of the twelfth order, taking
into account the general solutions of the corresponding homogeneous equations and
partial solutions of inhomogeneous equations, are also expressed through the general
solutions of inhomogeneous DEs of the second order.

The system of inhomogeneous differential equilibrium equations, which
describes symmetric deformation, is transformed similarly. General solutions are also
expressed through general solutions of inhomogeneous second-order equations.

It should be noted that in [35] we obtained partial solutions of inhomogeneous
differential equations of the form:

Dy Dy D, D, @ (x,y) = f(x,y); Dy Dy Dy D@ (x,y)= f(x,y);
Dy Dy D, D,Dy Dy@(x,9) = f(x,y); Dy Df Dy®(x,y) = f(x,).
The general and partial solutions of these equations are also expressed through

the general and partial solutions of the Poisson equations and the inhomogeneous

Helmholtz equations.
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Conclusions

The solution of the transformed systems of differential equilibrium equations,
which are derived from the initial equilibrium equations of high orders, is reduced to
the solution of homogeneous and inhomogeneous second-order differential equations.

Formulas for general and partial solutions of inhomogeneous differential
equations of high order equilibrium through general and partial solutions of
inhomogeneous differential equations of the second order (Poisson equations and
inhomogeneous Helmholtz equations) are derived.

This greatly simplifies the solution of boundary value problems, especially in
the case of intermittent or local loads.

The developed method of reduction of inhomogeneous differential equations of
high orders to equations of the second order can also be used in solving boundary

value problems based on other plate theories.
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