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Introduction  
 

For the calculation of plates and shells are used mainly theories that are based on 
assumptions and models [1, 2, 4, 5, 9, 11, 12, 21, 23, 25, 26]. Such theories can well 
describe certain classes of boundary value problems. But these classes need to be 
outlined for each theory by comparing their solution with the exact one derived from 
the three-dimensional equations of the theory of elasticity. The exact solution is 
difficult to come by. Only in some isolated cases it is possible to accurately solve the 
boundary value problem of the three-dimensional theory of elasticity [6, 14, 18]. To 
determine the limits of suitability of each theory, you can also compare the results 
with the solution of the corresponding boundary value problem, which is obtained on 
the basis of different variants of mathematical theory (MT). Variants of mathematical 
theories are based on the method of decomposition of the components of the stress-
strain state (SSS) into infinite mathematical series [3, 7, 8, 10, 13, 16, 17, 19, 27, 29–
35]. The construction of the three-dimensional problem of the theory of elasticity was 
performed by variational or other methods. The effectiveness of variants of the MT of 
plates and shallow shells depends on the methodology of construction of basic relations, 
differential equations (DEs), boundary conditions on the lateral surface, on the exact or 
approximate satisfaction of boundary conditions on the front faces. To evaluate the 
effectiveness of variants of MT, comparisons are needed with the exact solution of the 
three-dimensional theory of elasticity or with reliable variants of MT, which accurately 
describe the internal SSS and marginal effects. 

In [3, 7, 8, 16, 17, 19, 20, 27, 29-35] Legendre polynomials were used to 
construct the basic equations. Reisner's variational principle [22] was used in [16, 19, 
20, 21, 29-35]. In [20], the construction of the basic equations for a transversely 
isotropic plate, which is obliquely transversely loaded with respect to the median 
plane, was initiated. The components of displacements were taken in the form of two 
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terms with Legendre polynomials. Interrelated equations were obtained. 
In [29–33], a new variant of the MT of plates and shallow shells of arbitrary 

constant thickness under the action of arbitrary transverse loads was developed. The 
variant is based on the decomposition of all components of the SSS and boundary 
conditions on the side surface into infinite mathematical series of Legendre 
polynomials in the transverse coordinate. Three-dimensional DEs of the theory of 
elasticity, the semi-inverted Saint-Venan method, the Reissner variational principle 
are used to reduce the three-dimensional problem of the theory of elasticity to two-
dimensional. An important advantage over many other versions of the theory is that 
the boundary conditions are accurately satisfied on the front faces. The constructed 
basic dependences and equations of this variant of MT give a real opportunity to 
obtain analytical solutions of boundary value problems that take into account 
boundary effects. Numerical results obtained on the basis of the developed MT 
variant for SSS of a wide class of boundary value problems show high accuracy of 
the constructed theory in comparison with the exact solution taking into account the 
first six terms of partial sums for tangential displacements [29, 30]. An increase in the 
number of terms in the partial sums of mathematical series leads to an increase in the 
order of inhomogeneous systems of differential equilibrium equations, to the 
complication of basic equations, and to the complication of finding general solutions. 

To date, there are few developed analytical methods for solving inhomogeneous 
systems of differential equations of high-order equilibrium, which would simplify the 
finding of partial and general solutions by methods of mathematical physics. 

 
 
4.1. Statement of the problem and the idea of its solution 

 
A transvepsally isotropic plate of arbitrary constant thickness, which is 

subjected to arbitrary transverse loading, is considered. The isotropy plane coincides 
with the median plane. Tangential rectangular coordinates yx,  are located in the 

middle plane, the transverse coordinate z  is directed upwards perpendicular to it. 
Boundary conditions on the side surface can be static, kinematic or mixed. 

All SSS components and boundary conditions on the side surface are considered 
functions of three variables and are represented by infinite mathematical series using 
Legendre polynomials. If we take into account in tangential displacements 
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components with indices 0, 1, 2,…, N ( ),.,,...,,.,,, 11100 NNN wvuwvuvu , where N will 

be considered an odd natural number, then such an approximation will be called an 
approximation K0-N (АK0-N). If we take into account components with indices 1, 3 
,…, N ( ),.,,...,,., 111 NNN wvuwvu , then such an approximation will be called the 

approximation K13… N (AK13 N). 
The components of displacements in the K0-N approximation are represented by 

Legendre polynomials in the form (1): 
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The problem in the constructed variants of MT is to solve systems of DEs of 

equilibrium of high orders and to construct their general solutions. The main 
mathematical difficulty is finding general solutions of inhomogeneous systems of 
equations of equilibrium of high orders, including finding their partial solutions. 
Difficulties increase if the transverse load is intermittent or local. 

In many works on the theory of plates and shells, general and partial solutions 
were determined directly from the initial systems of equilibrium equations. In 
particular, methods of integral transformations were used to find partial solutions [24, 
28]. In some cases, it is almost impossible to use these methods due to the complex 
and cumbersome inverse integral transformations, as it is necessary to find 
cumbersome integrals with parameters that are not listed in the known literature. The 
method of direct solution of the initial systems of equations of equilibrium of high 
orders has led to significant difficulties [28]. 

The obtained systems of equilibrium equations of the constructed MT variant 
have a rather high order. These are systems of equations with respect to the 
components of displacements. In the approximation K0-3 the order of the system is 
twenty-second. In the approximation K0-5 the order of the system is thirty-fourth. 
Therefore, the direct analytical solution of such systems of equations is associated 
with great difficulties. 

A new method of integrating systems of high-order DEs is that the initial system 
of high-order equilibria was reduced by algebraic, differential, and operator 
transformations to convenient (solvable) inhomogeneous high-order differential 
equations. These equations were reduced by the operator method to inhomogeneous 
second-order DEs. This significantly reduced the difficulty of finding general 
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solutions of the initial system of high-order equilibrium equations. Especially if the 
transverse load was intermittent, or concentrated or local. General solutions of 
inhomogeneous second-order DEs could be found by various known methods of 
mathematical physics. The general solution of the initial system of differential 
equilibrium equations was found through the general solutions of the second-order 
equations. SSS was determined from the relevant dependencies based on the 
solutions of the initial DE systems. 

In [15] the inhomogeneous differential equation of the fourth order is reduced to 
two inhomogeneous Helmholtz equations. Integral transformations were not applied 
to the obtained equations. In [24], a partial solution of the fourth-order equilibrium 
differential equations of the theory of thin isotropic spherical shells of small 
curvature was found by direct application of the Hankel integral transformation. Even 
for low-order DE, this led to sufficient mathematical complications. 

The idea of the developed method is to simplify the definition of partial and 
general solutions of high-order DEs. Simplification of the search for these solutions is 
achieved by using methods of reduction of inhomogeneous DEs of high orders to 
inhomogeneous equations of the second order. The work is a development and 
generalization of researchs [30, 33-35]. 
 
 
4.2. Basic equations in the approximation K0-N 

 
This section presents the components of SSS, DEs of equilibrium, boundary 

conditions. The final DEs in the K0-N approximation are derived. General solutions 
of the system of differential equilibrium equations are obtained. 

 
4.2.1. Components of the stress-strain state.  
The components of the displacements are depicted in the form (1). 

Stress in the plate: 
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In formulas (2), the functions nxynx tt ,...,  have the following form: 
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),...,1,0(,)(),( 10,,0 Nnsdvudyxs znynxnxn =++= ν ; 

)2,1(,),( 10 ++== NNnsdyxs nznx ,  

)...,,1,0(),(),( ,, NnvuGyxt xnynyxn =+= , 

 
where h , l , p , g  with indices - mechanical and geometric parameters; Gdd ,, 100 - 

mechanical parameters of the plate material. Mechanical and geometric parameters 
will be called constant. 
 
4.2.2. Differential equations of equilibrium.  
Let us represent the equilibrium equation through NNN wvuwvuvu ,,,...,,,,, 11100 , 

taking into account the expressions for ixyix tt ,...,  according to (3), and performing 

some mathematical transformations. 
In the K0-N approximation, the system of differential equilibrium equations is of the 

order of (6N+4). It is shown that this system of equations is divided into two separate 
independent systems of equations. One system describes the SSS of a plate with symmetrical 
deformation relative to the median plane. It occurs under a symmetrical load relative to the 
median plane, which is applied both on the front faces and on the side surface. 

Another system of equations describes SSS for obliquely symmetric 
deformation. This is a purely bending deformation. It occurs when the obliquely 
symmetrical load relative to the median plane, which is applied both on the front 
faces and on the side surface. In all relations and equations it is necessary to take into 
account only those terms in the components of displacements that are taken into 
account in the partial sums of mathematical series for tangential components of 
displacements (1). This also applies to boundary conditions. 

It is established that in the approximation K0-N the system of differential 
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equations for obliquely symmetric loading has the order of 3 (N+1), and for the 
symmetric one - of the order of (3N+1). 

DE system describing obliquely symmetric deformation (AK13… N): 
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DЕ system describing symmetrical deformation (AK02… (N-1)): 
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In the systems of equations (4), (5) ijij LM ,  - differential operators not higher 

than the 2nd order; )(),( qLpM iqip  - transverse load functions; these operators and 

functions depend on the mechanical and geometric parameters of the plate. 
 
4.2.3. Boundary conditions.  
Boundary conditions follow from the Reisner variation equation and have the form: 
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Different boundary conditions follow from equation (6). 
 

4.2.4. Oblique symmetric deformation of the plate 
The methodology of reduction of systems of inhomogeneous equations of 

equilibrium of high orders to inhomogeneous equations of the second order is given 
for obliquely symmetric deformation of a plate. 
4.2.4.1. Transformation of systems of differential equilibrium equations.  
We transform the system of differential equations of equilibrium of skew-symmetric 
deformation (4). Analyzing the structure of the operators of the system of equations 
(4), we can reduce this system by mathematical transformations to the following 
form: 
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where ),( yxjψ  - vortex functions: 

),...,2,1(,),( ,, Njvuyx xjyjj =−=ψ ; 
22222 // yx ∂∂+∂∂=∇  – Laplace operator; cba ,,  s with indices are constants. 

Variations in parentheses next to the equations indicate the variation in which the 
equation is obtained. 

 
The number of DE (7) is equal to (N+1), and DE (8) (N+1) / 2, The number of 

DE system (7), (8) is equal to 3 (N+1) / 2. The same number of unknown functions 

NNN wvuwvuwvu ,,...,,,,,,, 333111 . We number the equation as follows: DE obtained 

for 1uδ  is the first equation, for 1vδ  is the second equation, for 3uδ  is the third 

equation, and so on. 
To obtain a system of equations describing the vortex boundary effect, the 

following steps from DE (7) must be performed. The first equation is differentiated 
by y , the second equation by x  and one equation is subtracted from another. The 

third and fourth equations are similarly transformed, and so on. A homogeneous 
system of order DE with respect to the vortex functions ),...,3,1(, Njj =ψ  is 

obtained: 
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where )( jiН ji =  are second-order differential operators; and )( jiН ji ≠  zero-order 

operators: 

)(,);,...,3,1(),( 00
2

2 jihНNihhН jijiiiii ≠==+∇= ψψψ .                (10) 

In (10) h  with indices are constant parameters, ψψ 00 ijji hh = . The differential matrix 

of the system of equations (9) is symmetric: )(),,...,3,1( jiNjНН ijji ≠== . 

 
We now obtain a DE system that does not contain vortex functions and 

describes internal SSS with a potential marginal effect. Let's convert equation (7) 
again. Differentiate the first equation for the variable x , the second equation for the 
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variable y  and add them; we differentiate the third equation by x , the fourth 

equation by y  and add them, and so on. We obtain the following DE system: 
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where d  with indices - constant values, which are determined by the parameters DE 
(7). 

From (8) and (11) we obtain an inhomogeneous DE system of order 2 (N+1) 
with respect to the ),( yxwj  functions: 
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where jiП  are fourth-order differential operators. qiП – second-order differential 

operators. All operators in (12) depend on mechanical and geometric parameters. 
They are found to look like this: 
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0141 ,... iµµ – сталі. 

Differential equations (9) and (12) will be called solvable DE of skew-
symmetric deformation. From these equations are the functions ),,( yxjψ ),( yxwj , 

),...,3,1( Nj = . The ),( yxjϕ  functions are determined from equations (8). Functions 

),( yxu j , ),( yxv j , are from equations (7) and are expressed through 

),( yxjϕ , ),( yxwj , ),( yxjψ . The stresses are according to formulas (2) and (3). 

 
4.2.4.2. General solutions of differential equations of vortex boundary effect.  
We reduce the system of equations of the vortex boundary effect (9) to the 
convenient DE. We transform the system (9) by the operator method. Let us represent 
the required functions ),( ухjψ  through the new function ),( yxψ  as follows: 

)3;,...,3,1(),,(),( 0
1 ≥== NNjухНух jj ψψ ,                           (14) 

where 0
1 jН  are the adjuncts of the differential determinant 0H  of the system (9). 

The system of equations (9), taking into account (14), will be reduced to the 
definition of the function ),( yxψ  from a homogeneous DE order (N+1). 
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where r  with indices – parameters. Equation (15) will be called the defining 
differential equation of the vortex boundary effect. 

The general solution DE (15) is represented as: 

∑
+

=
=

2/)1(

1

)( ),(),(
N

i

i ухух ψψ ,                                        (16) 

where ),()( ухiψ  are the general solutions of the Helmholtz differential equations 
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General solutions for vortex functions ),( yxjψ  are obtained on the basis of (14) 

–(17): 
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4.2.4.3. General solutions of differential equations of internal stress state and 
potential boundary effect.  
Consider the system of equations (12), which describes the internal SSS and the 
potential marginal effect. We represent the functions jw  through the new required 

functions ),( yxФk  by the operator method: 
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where 0
jkП  are adjuncts of the system determinant (12). 

On the basis of (12), (13), (19) we obtain a convenient (determining) system of 
DE with respect to functions ),( yxФk , which after factorization of the left parts will 

look like: 
);,(),(... 00)1(2100 yxqDayxФDDDDD kkkN =⋅⋅ −  ,3;,...,3,1 ≥= NNk      (20) 

where 

;;; 0
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0
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0 kkii sDsDD −∇=−∇=∇=  ;1,...,2,1 −= Ni  00 ,, kki ass – parameters. 

The system of differential equations (20) will be called hereinafter the determining 
system of internal SSS and potential boundary effect. 

The DE system (20) is more convenient than (12), because the left parts of this 
system are the same. Forms of general solutions of the DE system (20) are obtained 
in the form of: 

),,...,3,1(),,(),(),( 0 NkyxФyxФyxФ rkkk =+=                         (21) 
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where ),(0 yxФk  are the general solutions of the corresponding homogeneous DEs of 

the system (20), ),( yxФ rk  are the partial solutions of the inhomogeneous DEs (20). 

Since the homogeneous DE systems (20) are the same, we can put 0),(0 ≡yxФk , 

( Nk ,...,5,3= ) without increasing the order of this DE system. Then the general 
solutions (20) taking into account (21) will take the form: 

);,(),(),(),( 1111 yxФyxФyxФyxФ rПB ++=  ),...,5,3(),,(),( NkyxФyxФ krk == . (22) 

In formulas (22): ВФ1  is the general solution of the biharmonic equation 01
4 =∇ Ф . 

ПФ1  is the general solution of a homogeneous DE of order 2 (N-1): 
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),( yxФ rk  are partial solutions of inhomogeneous DEs (20). 

The general solution ПФ1  DE (23) is represented as: 
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where jПФ1  are the general solutions of the equations 
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The potential boundary effect is described by a homogeneous DE (23). Internal 
SSS is determined by the sum of the general solution ВФ1  of the biharmonic equation 

and the partial solutions ),...,3,1( NkФ rk =  of the inhomogeneous DE (20) of order  2 

(N+1). Thus, the equations of domestic SSS and potential  boundary effect are 
separated. 

The general solutions of the system of equations (12) based on (19), (22), (24) 
are as follows: 
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The components of displacements ),...,3,1(,, Nkvu kk =  are determined from DE 

(7): 
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parameters. 
Stresses are determined on the basis of the corresponding formulas (2), (3) 

through the components of displacements (25), (26). 
 
 

4.3. Reduction of inhomogeneous differential equations to inhomogeneous 
second-order equations 
 

Consider DE of order n2 : 
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where 0≠iA  is a constant value, ),( yxf  is a known function, ),( yxФ  is a desired 

function. 
Equation (27) can always be reduced to an inhomogeneous equation of the 

following form: 
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where )...,,2,1( niki =  - parameters, roots of the corresponding characteristic 

equation. 
The general solutions of homogeneous equations corresponding to equation (28) 

are expressed through the general solutions of the Helmholtz equations. 
The general solutions of inhomogeneous differential equations are represented 

as the sum of the general solutions of the corresponding homogeneous equations and 
the partial solutions of the inhomogeneous equations. 

In the next section we consider some partial cases of equations (20) and (28). 
In what follows, the general solutions of inhomogeneous differential equations 

of high orders are expressed through the general solutions of inhomogeneous 
equations of the second order. Therefore, in Section 3.1 we provide information on 
general solutions of inhomogeneous second-order differential equations. 
 
4.3.1. Inhomogeneous second-order differential equations. 
1). Differential equations of the form: 
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The general solution of the Poisson differential equation (29): is 
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),(),(),( 000 yxfyxfyxФ r+= , where ),(00 yxf  is the general solution of the 

corresponding homogeneous DE, determined by the Lagrange method: 

)1(),()(),( 2100 −=++−= iixyFixyFyxf , 

where 21, FF  are arbitrary functions of the corresponding arguments. 

The partial solution rf0  DE (29) is found by the Lagrange method using the 

auxiliary equation and has the following form: 
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DiDDiD

yxf r =
′+

=
′−′+

=  

where 

yDxD ∂∂=′∂∂= /;/ ; ))((// 2222 DiDDiDyx ′−′+=∂∂+∂∂ ; 

xiycxiyc dxxicxqyxqdxxicxfyxq −=+= ∫∫ +=−= ),(),(;),(),( 121 ; 

 
c  under integrals is considered a constant value. 
2). Inhomogeneous Helmholtz differential equations: 
 

,...2,1,);,(),( 2 =−∇== isDyxfyxФD iii ,                          (30) 

where is  are constant values. 

The partial solution ),( yxf ri  of equation (30) is defined as follows: 

i
ri D

yxf
yxf

),(
),( = . 

The general solution of a homogeneous DE corresponding to equation (30) in 
the class of exponential functions with separated variables has the form: 

,...)3,2,1(),(exp),(0 =+= ∑ nybxaCyxf in
n

inini , 

where inC  is arbitrary steels; ina  and inb  are constant values that satisfy the 

iinin sba =+ 22  equation. 

 
4.3.2. Heterogeneous differential equations of the fourth order 
1). Differential equations of the form: 

),(),(00 yxfyxФDD =                                                  (31) 

General solution DE (31): ),(),(),( 00000 yxfyxfyxФ r+= . 

The general solution ),(000 yxf  of homogeneous DE 0),(00 =yxФDD  has the 
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form: 
)()()()(),( 4321000 ixyFxixyFxixyFixyFyxf ++−+++−= , 

 
where 41 ...,, FF  are arbitrary functions from the corresponding variables. 

The partial solution DE (31) is as follows: 

),,(),(1),(11),( 43000 yxqyxq
DiD

yxf
DiDDiD

yxf rr =
′+

=
′−′+

=  

where 

xiycxiycr dxxicxqyxqdxxicxfyxq −=+= ∫∫ +=−= ),(),(;),(),( 3403 . 

Partial solutions of the inhomogeneous DE (31) can also be found by sequential 
integration of inhomogeneous equations of the second order: 

),(),();,(),( 1010 yxfyxФDyxfyxfD == . 

Here, partial solutions can be used as solutions. 
2). Differential equations of the form: 

.),...2,1(),,(),( == iyxfyxФDD ii .                                 (32) 

The partial solution ),( yxf rii  of equation (32) is determined by the sequential 

integration of inhomogeneous Helmholtz differential equations: 
  ),(),( yxfyxfD ii = ,  ),(),( yxfyxФD rii = .                             (33) 

where ),( yxf ri , riif – are the partial solutions of the first and second equations (33). 

The general solution 0iif  of the homogeneous equation, which corresponds to 

equation (32), in the class of exponential functions has the form: 
,...)3,2,1(),(exp)(exp),(0 =+++= ∑∑ nydxcDxybxaCyxf in

n
ininin

n
ininii , 

where inin DC ,  is arbitrary steels; inininin dcba ,,,  - various constants that satisfy the 

equation: iininiinin sdcsba =+=+ 2222 , . 

3). Differential equations of the form: 
,....).2,1,0,;(),,(),( =≠= jijiyxfyxФDD ji                                 (34) 

The partial solution ),( yxf rji  DE (34) is found by the operator method: 

)(1)(1),(),( rjri
jijiijji

rji ff
sD

f
D
f

DDDD
yxfyxf −=−

−
== , 

where ),(),,( yxfyxf rjri  are the partial solutions of the corresponding 

inhomogeneous Helmholtz equations. 
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Thus, partial solutions of inhomogeneous fourth-order DEs (32) and (34) are 
expressed in terms of partial solutions of second-order inhomogeneous equations. 

The general solution 0jif  of the homogeneous equation corresponding to 

equation (34) is expressed in terms of the general solutions of the Helmholtz 
equations. In the class of exponential functions 0jif  has the following form: 

,...)3,2,1(),(exp)(exp),(0 =+++= ∑∑ nydxcDybxaCyxf in
n

ininin
n

ininii . 

where inin DC ,  is arbitrary steels; inininin dcba ,,,  - constants that satisfy the equation: 

jininiinin sdcsba =+=+ 2222 , . 

In the following sections, we present partial solutions of inhomogeneous 
equations of order above the fourth. 
 
4.3.3. Differential equations of the sixth order 
Differential equations of the form: 

,....)2,1,0,;(),,(),(2 =≠= jijiyxfyxФDD ji .                                   (35) 

Partial solution of this equation: 

rjj
ji

rjri
jijjijijiji

r f
s

ff
sDsD

f
D
f

sDD
yxfyxФ 1)(11)(1),(),( 2222 −−=−−== .       (36)  

Partial solutions of this equation will be needed in the future to obtain partial 
solutions of inhomogeneous equations of higher orders. 

The partial solution (36) of DE (35) is also expressed in terms of the partial 
solutions of inhomogeneous equations of the second order, taking into account the 
partial solution of the inhomogeneous equation (34). The general solution of the 
homogeneous equation corresponding to DR (35) is expressed in terms of the general 
solutions of the Helmholtz equations. 
 
4.3.4. Inhomogeneous differential equations of the eighth order. 
1). Differential equations of the form: 

),(),(1111 yxfyxФDDDD = .                                      (37) 

Equations (37) are found in the variant of the mathematical theory of thick 
plates on an elastic basis. 

The partial solution ),( yxФr  of this equation is a successive finding of the 

partial solutions of the following equations: 
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).,(),();,(),();,(),();,(),( 1121132131 yxfyxФDyxfyxfDyxfyxfDyxfyxfD rrr ====  
2). Differential equations of the form: 

),(),(2211 yxfyxФDDDD = .                                        (38)  

Partial solution of equation (38): 

)).(2(1),( 21
12

22112
12

rrrrr ff
s

ff
s

yxФ −−+=  

Therefore, the general and partial solutions of the inhomogeneous equations of 
Section 3.4, taking into account the previous paragraphs, are also expressed through 
the general and partial solutions of the inhomogeneous equations of the second order. 
 
4.3.5. Inhomogeneous differential equations of the twelfth order 
1). Differential equations of the form: 
 

)5,3,1(),,(),(. 00432100 == kyxfDayxФDDDDDD kkk  ,                (39) 

where )5,3,1(0 =kDk  is the Helmholtz differential operator. 

 
The system of differential equations of internal SSS of plates with potential 

boundary effect at obliquely symmetric deformation in the K135 approximation is 
reduced to such equations. In [34], partial solutions of rkФ  of equations (39) are 

obtained. They look like: 

),
)()(

)(
)(

)(

)(
)()((),(

4321

00

342414
2
4

04

432313
2
3

03

423212
2
2

02

413121
2
1

01
00

ssss
f

ssss
ff

ssss
ff

ssss
ff

ssss
ffDayxФ

rrrrr

rrrr
kkrk

+
−

+
−

+

+
−

+
−

=

                         (40) 

where )4,3,2,1(),(),,(),,( 000 =iyxfyxfyxf rirr  are the partial solutions of the 

corresponding inhomogeneous equations. 
Thus, the partial solutions (40) of inhomogeneous DE (39) are expressed by the 

differential operator from the linear combination of partial solutions of 
inhomogeneous DE of the second order. 

The general solutions of DE (39) are determined by the sum of: 

),(),(),(),(
4

1
0000 yxФyxfyxfyxФ rk

i
ik ++= ∑

=
,  

where ),(000 yxf  is the general solution of the biharmonic DE; ),(0 yxfi  – general 
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solutions of DE Helmholtz )(,0),()( 2 constsyxfs iii −=−∇ . 

2). Differential equations of the form: 
 

),(),(4
1

2
0 yxfyxФDD =  .                                      (41) 

 
Equations of the form (41) describe the internal SSS with a potential edge effect 

with four times the root 1s  of the characteristic equation in the K135 approximation. 

The partial solution of equation (41) has the form: 
 

).2)(1)(4(1),( 1111111
1

11002
1

013
1

2
1

rrrrrrr ff
s

ff
s

ff
ss

yxФ +−++−−=
 

Thus, the general solutions of inhomogeneous DEs of the twelfth order, taking 
into account the general solutions of the corresponding homogeneous equations and 
partial solutions of inhomogeneous equations, are also expressed through the general 
solutions of inhomogeneous DEs of the second order. 

The system of inhomogeneous differential equilibrium equations, which 
describes symmetric deformation, is transformed similarly. General solutions are also 
expressed through general solutions of inhomogeneous second-order equations. 

It should be noted that in [35] we obtained partial solutions of inhomogeneous 
differential equations of the form: 

);,(),(2100 yxfyxФDDDD =  );,(),(1100 yxfyxФDDDD =  

);,(),(432100 yxfyxФDDDDDD =    ),(),(2
2

2
1

2
0 yxfyxФDDD = . 

The general and partial solutions of these equations are also expressed through 
the general and partial solutions of the Poisson equations and the inhomogeneous 
Helmholtz equations. 
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Conclusions 
 
The solution of the transformed systems of differential equilibrium equations, 

which are derived from the initial equilibrium equations of high orders, is reduced to 
the solution of homogeneous and inhomogeneous second-order differential equations. 

Formulas for general and partial solutions of inhomogeneous differential 
equations of high order equilibrium through general and partial solutions of 
inhomogeneous differential equations of the second order (Poisson equations and 
inhomogeneous Helmholtz equations) are derived. 

This greatly simplifies the solution of boundary value problems, especially in 
the case of intermittent or local loads. 

The developed method of reduction of inhomogeneous differential equations of 
high orders to equations of the second order can also be used in solving boundary 
value problems based on other plate theories. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




