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Introduction 

In the theory of operator interpolation, the construction and investigation of 

interpolation polynomials in abstract linear spaces plays an important role, among 

which Newton-type operator interpolation formulas occupy a significant place. 

We derive three fundamentally new constructions of interpolation operator 

polynomials, using the traditional technique for this problem. The first construction is 

obtained in subsection 1 for an abstract Banach space using a specially chosen 

countable sequence of nodes associated with the basis of the space. The constructed 

interpolation polynomials have the property of uniqueness and invariance. 

The second construction is described in subsection 2 for a specific Banach space 

[ )0,C ∞  using a finite sequence of continuum nodes. Here, we also construct 

interpolation polynomials (of integral form) that have the property of uniqueness and 

invariance with respect to all integral polynomials of the same degree. 

In subsection 3, the problem of the existence of a unique, invariant interpolation 

operator polynomial in Hilbert space, defined by its values on a continuous set of 

nodes, is formulated and solved. For the polynomial obtained there to be interpolable, 

it is necessary and sufficient that the discrete analog of the substitution rule is fulfilled. 

However, the substitution rule imposes significant restrictions on the interpolated 

operator. Therefore, in subsection 4, we construct and investigate a third-degree 

polynomial that does not require the substitution rule. 

The results of this chapter have been published in [1 – 5]. 
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11.1. Polynomial interpolation in a Banach space with a basis 

 

Let us assume that YX ,  – linear spaces, nπ  – a set of polynomials of YXPn →:

, n  – degree of the form 

( ){ }n
nnnn xLxLLxPP +++== 10:π  ,     (1) 

where ( ) knkYXxxLxLYL k
k

k −=→=∈ ,,2,1,:,,0   are the operator degrees 

obtained from symmetric k -linear operator forms ( ):,,, 21 kk VVVL   YX k →  at 

xVVV k === 21 . Assume that the elements mxxx ,,, 21  ( )nm ≥  are linearly 

independent from X . We construct the set ( ) { } ( )mNNzmZ N
ii == = ,0  as follows: 

00 =z , ,ii xz =  mi ,,2,1 = , and the rest Nmm zzz ,,, 21 ++  as all possible sums 

(including repetitions) of elements mxxx ,,, 21   by two, three, and so on to the n  terms 

in each. It is easy to show that 
∑
=

−+=
n

k

k
kmCN

1
1

. Let YXF →:  some, generally 

nonlinear, operator be given by its values ( )izF , Ni ,,2,1,0 = . Then, based on [6], 

the following result holds. 

Theorem 1. Let the polynomial ( ) n
I

nm xFP π∈;, , the values of the k -linear 

operator forms ( )
kiii

I
k xxxL ,,,

21
 , nk ,,1,0 = , mi j ≤≤1  be defined by [6] 

( )00 FLI = , 

( ) ( ){1 2 1 2

1, , ,
!n n

I
n i i i i i iL x x x x x x

n
φ= + + + − 

 

( ) ( )1 2 1 1 2 2n n ni i i i i i ix x x x x x xφ φ
− −

− + + + + + + + + + +   

 

( ) ( )2 3 1 2 2n ni i i i i ix x x x x xφ φ
−

 + + + + + + + + +  

 

( ) ( )1 2 3 3 4n n ni i i i i i ix x x x x x xφ φ
−

+ + + + + + + + + + + +   

 

( ) ( ) ( ) ( )[ ]
niii

n xxx ϕϕϕ +++−+ −


21

11 ,       (2) 
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where ( ) ( ) ( )0FxFx −=ϕ , and for the definition ( )
121

,,,1 −− niii
I
n xxxL   we need to replace 

in (2) n  by 1−n , ( )xϕ  by ( ) nI
nxLx −ϕ , for the definition ( )

221
,,,2 −− niii

I
n xxxL   – n  by 

2−n , ( )xϕ  by ( ) nI
n

nI
n xLxLx −− −
−

1
1ϕ  etc. Then it ( )xFPI

nm ;,  is interpolable for F  on 

the set of nodes ( )mZ , which means that the conditions hold 

( ) ( )ii
I

nm zFzFP =;, ,    Ni ,,2,1,0 = .      (3) 

Note that the interpolant ( )xFPI
nm ;,  does not have the properties of uniqueness and 

invariance on the set nπ . Let us explain this fact, and the construction of the polynom 

( )xFPI
nm ;,  using the example 2== nm . We note that ( ) { }5

02 i iZ z
=

=  ( )5=N , 00 =z , 

11 xz = , 22 xz =  ( 21, xx  – linearly independent), 13 2xz = , 24 2xz = , 215 xxz += . From 

the conditions (3) we obtain 

( ) ( )0; 002,2 FLzFP II == , 

( ) ( )1
2
121112,2 ; xxLxLzFP III ϕ=+= , 

( ) ( )2
2
222122,2 ; xxLxLzFP III ϕ=+= , 

( ) ( )1
2
121132,2 242; xxLxLzFP III ϕ=+= , 

( ) ( )2
2
222142,2 242; xxLxLzFP III ϕ=+= , 

( ) ( ) ( )21
2
22212

2
12211152,2 ,2; xxxLxxLxLxLxLzFP IIIIII +=++++= ϕ . 

From this system of linear equations we find 

( ) ( ) ( ) ( ){ }2121212 2
1, xxxxxxLI ϕϕϕ −−+=

,     
( ) ( ){ }11

2
12 22

2
1 xxxLI ϕϕ −=

, 

( ) ( ){ }22
2
22 22

2
1 xxxLI ϕϕ −=

,     
( ) ( ){ }1111 24

2
1 xxxLI ϕϕ −=

, 

( ) ( ){ }2221 24
2
1 xxxLI ϕϕ −=

,     ( )00 FLI = ,     (4) 

which is consistent with formulas (2). As mentioned above, the interpolant ( )xFPI ;2,2  
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with the found values of k -linear forms is not unique and invariant on the set of 

polynomials of the second degree. For example, 

100 RKL II ∈= , 
( ) ( )∫=

1

0
11 dttxtKxLI

, 
( ) ( ) ( )∫ ∫=

1

0
2121

1

0
212

2
2 , dtdttxtxttKxLI

. 

Then according to (4) we obtain 

( )00 FK I = ,     
( ) ( ) ( ) ( ){ }∫ −=

1

0
1 24

2
1

iii
I xxdttxtK ϕϕ

, 

( ) ( ) ( ) ( ) ( ) ( ){ }∫ ∫ −−+=
1

0

1

0
2121212 2

1, jijiji
I xxxxdtdttxtxttK ϕϕϕ

, 2,1, =ji .   (5) 

We have a system of linear integral equations (5) for determining the kernels 
II KK 21 , . Obviously, this system has many solutions and, therefore, the interpolation 

polynomial ( )xFPI ;2,2  is not unique. Let us assume ( )xP2  a fixed polynomial of the 

form 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ ++=
1

0

1

0
2121212

1

0
102 , dtdttxtxttKdttxtKKxP

. 

Then we use formulas (2) to determine the formula ( )xPPI ;22,2  and obtain 

00 KK I = ,     
( ) ( ) ( ) ( )∫∫ =

1

0

1

1

0
1 dttxtKdttxtK ii
I

, 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫ =
1

0

1

0
2121212

1

0

1

0
2121212 ,, dtdttxtxttKdtdttxtxttK jiji

I

,     2,1, =ji . 

In general, these inequalities do not imply the inequalities i
I
i KK = , 2,1,0=i , 

which does not provide the invariance of the interpolant ( )xFPI ;2,2  with respect to 

polynomials of integral form of the second degree. 

Let 1 2, , , mx x x  be the linearly independent elements of X . We construct the set 

of elements corresponding to these elements. ( ) { } ( )mNNzmZ N
ii == = ,0 . It is known 

from [7] that in the space X ′  adjoint to X  there exists a system of linear functionals 
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( )xli , mi ,,2,1 =  biorthogonal (adjoint) to the system ix , mi ,,2,1 = , so ( ) ijji xl δ= , 

mji ,,2,1, = , ijδ  is the Kronecker symbol. We consider the set of operator 

polynomials of the n  degree of the form 

( ) ( ) ( )








== ∑ ∑
= =

n

k

m

ii
iiiinmnmnm

k

kk
xlxlaxPP

0 1,,
,,,

1

11
:





π
,    (6) 

where kiia
1  are symmetric elements from Y  with respect to their indices.  

Theorem 2. We let the operator polynomial nm
I

nmP ,, π∈ , where 
I

ii k
a
1  defined 

by (2), when replacing 
kI

k xL  by 
( ) ( )∑

=

m

ii
ii

I
ii

k

kk
xlxla

1,,1

11






, ( )
kii

I
k xxL ,,

1
  by 

I
ii k

a
1 , 

nk ,,1,0 = , mi j ≤≤1 . Then this polynomial will be interpolating for F  on the set of 

nodes ( )mZ  with interpolation conditions (3). The interpolant ( )xFPI
nm ;,  is unique and 

invariant with respect to polynomials of degree n  on the set nm,π . 

Proof. Since 
I

ii k
a
1 , defined by (2), are solutions of a linear system of equations 

equivalent to (3), the interpolativity of the polynomial ( )xFPI
nm ;,  is obvious. Since this 

solution is unique, the corresponding interpolant ( )xFPI
nm ;,  is also unique on the set 

nm,π . Let ( ) ≡xF  ( ), ,m n m nP x π∈ . Then from formulas (2), taking into account the 

algebraic identities 

( ) ( )1 2 1 2 1
m m

n nx x x x x x −
+ + + − + + + + +  

 

( ) ( )2 3 1 2 2
m m

n nx x x x x x −
 + + + + + + + + + +   

 

( ) ( ) 1
3 4 1 21 0m m m m m

n nx x x x x x−  + + + + + + − + + + =   

,   (7) 

1,,2,1 −=∀ nm  , that are applied to the operator polynomial ( )xP nm, , we obtain 

kk
ii

I
ii aa





11
=  ,    nk ,,1,0 =  ,    mij ≤≤1  ,    (8) 

where kiia
1  are the elements of Y , corresponding to the polynomial ( )xP nm, . The 



Heritage of European science ‘ 2024                                                                                                                      Part 3 

                                      ISBN  978-3-98924-038-4  MONOGRAPH                                                                                                       183 

equalities (8) mean the invariance of the interpolant ( )xFPI
nm ;,  with respect to all 

polynomials of the set nm,π : ( ) ( )xPxPP nmnm
I

nm ,,, ; ≡ . The theorem is proved. 

Remark 1. If X  is a pre-Hilbert space with scalar product ( )⋅⋅, , then, according 

to the results of [8], ( )xli  we can write it in the form 
( ) ( )∑

=

=
m

j
jjii xxxl

1
, ,α

, mi ,2,1= , 

where ji,α  are the elements of the inverse Gram matrix constructed by the system of 

linearly independent elements mxxx ,,, 21  . 

Remark 2. It follows from [8] that in a pre-Hilbert space X  for the invariant 

solvability of an interpolation problem with conditions (3) (for the existence of an 

operator polynomial interpolant on the set of nodes ( )mZ  at any values of ( )izF , 

Ni ,,1,0 = ) it is necessary and sufficient to fulfill the condition 0ˆ =Z , where Ẑ  is a 

matrix whose rows are the coordinates of the orthonormal eigenvectors of the matrix 

( )
N

ji

n

k

k
ji zz

0,0
,

==
∑=Γ

, 100 = . It is obvious that 

10ˆ +=Γ⇔= NrankZ . 

But, since the interpolation problem on the set of nodes ( )mZ  (with the 

interpolation conditions (3)) is invariantly solvable according to relations (2), then  

( ) 1,
0,0

+=
==

∑ Nzzrank
N

ji

n

k

k
ji

. 

 

 

11.2. Polynomial interpolation in [ )∞,0C  

 

Let YX ,  – Banach spaces, nπ  be the set of continuous polynomials of the 

form (1). The following problem is to define a sequence of nodes and an interpolation 

polynomial of degree n  for an operator YXF →:  on this sequence that would have 
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the properties of uniqueness and invariance with respect to polynomials of the same 

degree over the whole set nπ . Let { }∞=1iix  be the basis of the space X . We construct the 

set of nodes ( ) { } ,0
N
iizmZ ==  ( )mNN = , where 00 =z , ,ii xz =  mi ,,2,1 =  are the first 

m  elements of the basis. Based on [9], in a space X ′  conjugate to X  there exists a 

system of linear continuous functionals ( ){ }∞=1ii xl  biorthogonal (conjugate) to the system 

of elements { }∞=1iix , thus  ( ) ijji xl δ= , ,2,1, =ji . We consider a sequence (by index m

) of interpolation polynomials ( )xFPI
nm ;,  on the set of nodes ( )mZ  of the following 

form 

( ) ( ) ( )∑ ∑
= =

=
n

k

m

ii
ii

I
ii

I
nm

k

kk
xlxlaxFP

0 1,,
,

1

11
;







 ,    (9) 

where 
I

ii k
a
1  are the elements of Y , which are symmetric with respect to their indices 

and are defined by formulas (4.2). Without reducing generality, we assume that 1=ix

, 1=il , ,2,1=i  . The following theorem holds. 

Theorem 3. Let 

constMa
k

k
ii

k
I

ii =≤∑
∞

=1,,1

1




 , nk ,,1,0 = .    (10) 

Then the limiting polynomial 
( ) ( ) n

I
nmm

I
n xFPxFP π∈=

∞→∞ ;lim; ,, , exists Xx∈∀ , is an 

interpolation polynomial for the operator F  on a countable sequence of nodes ( )∞Ζ , 

unique on the set of nπ  continuous polynomials of the form (1) and invariant with 

respect to all polynomials of degree n  from nπ . 

Proof. Existence of the limit. From condition (10) of the theorem it follows that 

( ) ( ) ≤∑
∞

=1,,1

11

k

kk
ii

ii
I

ii xlxla






k
k

ii

kI
ii xMxa

k

k
≤∑

∞

=1,,1

1




, nk ,,1,0 = . 

The latter means that the series in ( )xFPI
n ;,∞  converge, and the k  operator degrees of 
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this polynomial are continuous. Thus ( )xFPI
n ;,∞  exists, is continuous and belongs to nπ

. 

Interpolation. Since for every fixed m , nm ≥  the polynomial ( )xFPI
nm ;,  is 

interpolative for F  on a set of nodes ( )mΖ , ,1, += nnm  and there is an embedding 

( ) ( ) ⊂+Ζ⊂Ζ 1nn , the limiting polynomial will be interpolative on a countable 

sequence of nodes ( )∞Ζ . 

The uniqueness of the polynomial ( )xFPI
n ;,∞  is obvious, since each element of the 

sequence ( )xFPI
nm ;,  is determined by formulas (2) in the unique way. 

Invariance. Let n
n

nn xLxLLPF π∈+++=≡ 10 . Taking into account the 

algebraic identities (7), applied to the polynomial ( )xPn  and based on formulas (2), we 

obtain 

( ) ( ) ( ) ( )∑ ∑
= =

=
n

k

m

ii
iiiikn

I
nm

k

kk
xlxlxxLxPP

0 1,,
,

1

11
,,;





. 

Then 

( ) ( ) ==
∞→∞ xPPxPP n

I
nmmn

I
n ;lim; ,,

( ) ( ) ( ) =∑ ∑
= =

∞→

n

k

m

ii
iiiikm

k

kk
xlxlxxL

0 1,,1

11
,,lim





 

( ) ( ) =







= ∑∑∑

===
∞→

m

i
ii

m

i
iik

n

k m
k

kk
xxlxxlL

110 1

11
,,lim 

( ) ( ) =







∑ ∑∑
= =

∞→
=

∞→

n

k

m

i
iim

m

i
iimk

k

kk
xxlxxlL

0 11
lim,,lim

1

11


 

( ) ( ) n

n

k
n

k
k

n

k
k xPxLxxL π∈=== ∑∑

== 00
,,

, 

which proves the invariance. Here, we use the representation of the element Xx∈  in 

the form of 
( )∑

∞

=

=
1i

ii xxlx
, and the possibility of a limit transformation, since the k -

linear operator forms of the polynomial ( )xPn  are continuous. The theorem is proved. 
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Let us consider the set of polynomials of integral form defined on the space 

[ )∞,0C  of continuous functions with a domain of values on the real axis. We will 

construct a new type of interpolation polynomial with continuous nodes, which has the 

properties of uniqueness and invariance. The interpolation formula does not contain 

either the operation of differentiation of the interpolated functional or Stieltjes 

integrals, and does not require the "substitution rule", about which we will discuss 

below. In [10], the existence of an interpolation functional polynomial of the form is 

proved 

( ) ( ) ( ) ( )( )+−+= ∫
1

0
010 ttxtKKxPn ϕ

( ) ( ) ( )( ) ( ) ( )( ) ++−−+ ∫ ∫ 

1

0

1

12212101212

1

,
t

dtdtttxttxttK ϕϕ
 

( ) ( ) ( )( ) ( ) ( )( )∫ ∫ ∫ ×−−+
−

1

0

1

212101

1

21

1 1

,,,
t t

nn ttxttxtttK
n

 ϕϕ
 

( ) ( )( ) 111 dtdtdtttx nnnnn −−−× ϕ ,    (11) 

with kernels ( )ii QK Ω∈ , where ( ) [ ]1,0Qti ∈ϕ , 1,,0 −= ni  , ( ){ :,,, 21 ii ξξξ =Ω  

}1 20 1iξ ξ ξ≤ ≤ ≤ ≤ ≤ , ( )iQ Ω  is a set of piecewise continuous functions for each 

variable with a finite number of discontinuity points of the first kind. Moreover, the 

interpolation continuum node is the function 

( ) ( ) ( ) ( ) ( )( )∑
=

−−−+=
n

i
iii

nn tttHttx
1

10, ϕϕξϕξ
,   n

n Ωξ ∈ ,   nk ,,2,1 =  
H  is the Heaviside function, and the sufficient conditions for the existence of such an 

interpolant are as follows: 

1. 
( ) ( )[ ] ( )( ) ( )∏

=

−
− ∈⋅

∂∂
∂

−
n

i
n

nn

n

n

iiii QxF
1 1

1
1 , Ωξ

ξξ
ξϕξϕ

 ,                                   (12) 

2. "substitution rule" 

( )( ( ) ( ) ( )( )+⋅−⋅−⋅+



⋅

∂∂∂
∂




∂
∂

−
−−

−

−

1
11

121

1

, kkk
kk

k

k

k

zHxF
zzzz

ϕϕξ
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( ) ( ) ( )( ))]} =⋅−⋅−⋅+ =++ + kk zzkkkzH
111 ϕϕ  

( ) ( )
( ) ( ) ( )(




+⋅

∂∂∂
∂

∂
∂

−
−

= −−

−

−

−+

− 11

121

1

11

1 , kk

k

k

kkkkk

kkkk xF
zzzzzz

zz ξ
ϕϕ

ϕϕ

 
( ) ( ) ( )( ))]⋅−⋅−⋅+ ++ 11 kkkzH ϕϕ ,       1,,2,1 −= nk  .   (13) 

Here ( ) [ ]1,0Qti ∈φ , ( ) ( ) ( ) ( )tttt jjii 11 −− −≠− φφφφ , ji ≠ . If ( ) ( )tti 2φφ =  then the 

"substitution rule" (13) is always satisfied.  

Let us construct an interpolation functional polynomial of integral form with the 

above properties of uniqueness and invariance. We denote by nπ  the set of functional 

polynomials of the degree n  of the form 

( ) ( ) ( )




++== ∫
∞

0
10: dttxtKKxPP nnnπ ( ) ( ) ( )∫ ∫

∞ ∞

++
0 0

2121212 , dtdttxtxttK
 

( ) ( ) ( ) ( )∫ ∫
∞ ∞

+
0 0

212121 ,,, nnnn dtdtdttxtxtxtttK 

,  [ ) 1,0: RCPn →∞ ,    (14) 

where iK  are symmetric functions of their variables, ( )ii LK Ω1∈ , 

[ ) ( ) [ )∞×∞=Ω ,0,0  ii , [ )∞∈ ,0Cx . Let us introduce a system of linearly 

independent functions at different iξ : 

( ) ( ) iii tttx ξφξ sin, = ,    ni ,,2,1 = ,    ( ) [ )∞∈ ,0Ctφ .   (15) 

We construct a set of continuum nodes ( ) { }N
iiznZ 0== , ( )mNN = , depending on 

the real parameters iξ .  

The problem is to find a polynomial of degree n  ( ) n
I

n xFP π∈;  with kernels 
I
iK , 

that satisfies the interpolation conditions 

( )( ) ( )( )ξξ ,,; ⋅=⋅ ii
I

n zFzFP ,    Ni ,,2,1,0 = , nΩ∈∀ξ .    (16) 

Note that instead of the conditions (4.16), we can set one interpolation condition 

on the continuum node 
( ) ( ) ( )∑

=

=
n

i
i

n tttz
1

sin, ξφξ
, so that, instead of (16), we require the 
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fulfillment of the identity ( )( ) ( )( )ξξ ,,; ⋅=⋅ nnI
n zFzFP , nΩ∈∀ξ , from which, at the 

corresponding values of iξ , as particular cases, the conditions (16) will follow. The 

choice of continual interpolation nodes in the form of a set ( )nZ  based on (15) is 

convenient for further description. 

Thus, we have the following problem. We need to define the kernels 
I
iK , 

ni ,,1,0 =  so that the corresponding polynomial ( )xFPI
n ;  is interpolative on a 

continuous set of nodes ( )ξ,tzi , Ni ,,1,0 − , which depends on a continuous vector 

parameter nΩ∈ξ  with interpolation conditions (16). According to (14) the operator 

degree p  of the polynomial ( )xFPI
n ;  will have the form 

( ) ( ) ( ) ( ) ppp
I
p

pI
p dtdtdttxtxtxtttKxL  212

0 0
121 ,,,∫ ∫

∞ ∞

=
. 

From the conditions (16), we find the values of p - linear operator forms 

( ) ( ) ( )( )pp
I
p zzzL ξξξ ,,,,,, 2211 ⋅⋅⋅   as the right-hand sides of inequalities (2). On the other 

hand 

( ) ( ) ( )( )=⋅⋅⋅ pp
I
p zzzL ξξξ ,,,,,, 2211   

( ) ( ) ( ) ( ) == ∫ ∫
∞ ∞

ppppp
I
p dtdtdttztztztttK  21222

0 0
11121 ,,,,,, ξξξ

 

( ) ( ) ( ) i

p

i
iiip

I
p dttttttK∫ ∫ ∏

∞ ∞

=

=
0 0 1

21 sin,,, ξφ

,   np ,,2,1 = .   (17) 

Applying the inverse sine transformation, we obtain from formula (17) 

( ) ( ) ×













=

−

=
∏

1

1
21

2,,,
p

i
i

p

p
I
pK ξφ

π
ξξξ 

 

( ) ( ) ( )( ) ( )∫ ∫ ∏
∞ ∞

=

⋅⋅⋅×
0 0 1

2211 sin,,,,,,
p

i
iiipp

I
p dtttztztzL ξ

,  np ,,2,1 = . (18) 

Thus, if the conditions (16) are met, then the kernels 
I
pK  of the polynomial 

I
nP  
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are determined by formulas (18). On the contrary, if the kernels are calculated by 

formulas (18), then the sine transformation determines the values of the p -linear 

operator forms  

( ) ( ) ( )( )
pp iiiiii

I
p zzzL ξξξ ,,,,,,

2211
⋅⋅⋅  ,   np ,,2,1 = ,   ni j ≤≤1 , 

which, are the solution of a system of linear equations equivalent to the interpolation 

conditions (16). 

Theorem 4. Let the functional ( )( )⋅xF  satisfy the conditions 

( ) ( )( ) ( )ppp
I
p LtztzL Ω∈⋅⋅ 111 ,,,,  ,  np ,,2,1 = . 

Then, in order for the operator polynomial ( )xFPI
n ;  to be interpolative on a continuous 

set of nodes ( ) { }N
iiznZ 0== , ( )nNN =  it is necessary and sufficient that its kernels are 

defined by formulas (18). 

We also note that the interpolant ( )xFPI
n ;  on a continuous set of nodes is unique. 

This fact is obvious as a consequence of the result of the previous theorem. 

Furthermore, the following statement holds 

Theorem 5. The interpolation polynomial ( )xFPI
n ;  on a continuous set of nodes 

( )nZ  is invariant with respect to all polynomials of the form (14).  

Proof. Let the interpolated operator F , be a functional polynomial nnP π∈  of the 

form (14), so nPF ≡ . Then, using the algebraic identities (7) applied to the polynomial 

nP , and the conditions  

( ) ( )ii
I

n zzFP ϕ=; ,  ( ) ( ) ( )0nn PxPx −=ϕ , Ni ,,2,1 =  

we obtain by formulas (2) the values 

( ) ( ) ( )( )=⋅⋅⋅ pp
I
p zzzL ξξξ ,,,,,, 2211   

( ) ( ) ( ) ( ) ppppp
I
p dtdtdttztztztttK  21222

0 0
11121 ,,,,,, ξξξ∫ ∫

∞ ∞

=
, ni ,,2,1 = ,  (19) 

where pK  are the kernels of the polynomial ( )xPn . From (19), by the inverse sine 
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transformation, we obtain 

( ) ( ) ×













=

−

=
∏

1

1
21

2,,,
p

i
i

p

ppK ξφ
π

ξξξ 

 

( ) ( ) ( )( ) ( ) =⋅⋅⋅× ∫ ∫ ∏
∞ ∞

=0 0 1
2211 sin,,,,,,

p

i
iiipp

I
p dtttztztzL ξ ( )ppK ξξξ ,,, 21  ,    

np ,,2,1 = . 

Thus, the polynomials 
I

nP  and nP  coincide, so ( ) nn
I

n PxPP =; . The theorem is 

proved. 

Remarks 3. Instead of the sine transformation, any other integral transforms for 

which the inverse formulas are known (cosine, Hankel, Kantorovich-Lebedev, and 

others) could be used. Such an approach to the construction of interpolation functional 

polynomials was used by Yanovich L.A. and his students [8], but their constructions 

contained Stieltjes integrals by the operator of the scalar argument and are not 

interpolative at the continuum nodes. 

 

 

11.3. Existence of a unique, invariant interpolation operator polynomial in 

Hilbert space 

 

Let H  be a separable Hilbert space with an orthonormalized basis { } ∞= ,1iie , 

( ) ,2,1,,, == jiee ijji δ , where ( )⋅⋅,  is a scalar product in H , is the Kronecker 

symbol. The interpolating operators act from H  to the Banach space Y . The norm 

generated by the scalar product in H , is denoted by ⋅ , and the norm in Y  is denoted 

by Y⋅ . 

Let us fix any 1+n  elements of H . Let them be nixi ,0, = , and ji xx ≠ , ji ≠ . 

We introduce a countable set of points 
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( ) ( )∑∑
=

∞

=
−−+=

n

s p
ppss eexxxx

n
1

10,,, ,
21

ξ
ξξξ 

,   (20) 

( ) ( ){ ∈∞≤≤≤≤≤=∈= == innii
n

nii
n ηηηηηξ ,1| 21,1,1 ηξ , } nni Ω== ,1 , 

which we will later use as interpolation nodes. Here  is a set of positive integers. 

Let us introduce a set of continuous operator polynomials of degree n  

( ) ( ) ( )




+++=→=Π ∑
∞

=11

11
,|:

i
iinnn exbbxPYHP 

 

( ) ( )( ) ( )
n

n

n ii
i i i

iiii exexexb ,,,
2

1 2

121
1 1 1

,,, 


∑∑ ∑
∞

=

∞

=

∞

=

+
, ( ) ∈∀∈ kiii iiYb

k
,,, 1,,, 21



 , 

Ybnk ∈= ,,1 ,     
( )





=∞<∑ ∑ ∑
∞

=

∞

=

∞

=1 1 1

2

,,,
1 2

21
,1,

i i i
iii

k

k
nkb





   (21) 

and formulate the following interpolation problem. 

Problem I. For the operator ( )xF , given its values on the set of nodes (20), find 

an operator polynomial ( ) n
I

n xP Π∈ , that satisfies the interpolation conditions 

( )( ) ( )( ),,,,,,, 2121 nn
xFxP I

n ξξξξξξ 

=    n
n Ωξ ∈ .   (22) 

The following notations we will use: 

( )( ) ( )( )=−∇=∆
kkkk iiiiiiiiiiii xFxF ,,,,,, 21212121   

( )( ) ( )( )
kkkkkk iiiiiiiiiiiiii xFxF ,,,,1,,,, 121121121121 −−−−

∆−∆= +  ,  

1,,2,1 += nk  ,   ( )( ) ( )( ) ( )( )111 1
1

ixFixFixFi −+=∆     (23) 

(recurrent definition of mixed differences forward of any order). 

Theorem 6. Let the continuous operator ( )xF  satisfy the conditions 

( )( )
( ) ( )∑ ∑ ∑

∞

=

∞

+=

∞

+= −−

∞<
−−

∆

1 1 1
2

1
2

01

2

,,,

1 12 1 1

2121

,,i ii ii ikki

Yiiiiii

kk k

kk

exxexx

xF







,    (24) 

1,1 += nk  
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where 00 =i , 1,0, +=∈ niHxi , a set of arbitrary elements. Then, in order for the 

operator ( )xF  to have a representation 

( ) ( ) ( )
( ) ( )( ) ++∆

−
−

−= ∑
∞

=

1
1 01

0
0 1

1 1

1

,
,

ixF
exx
exx

xFxF i
i i

i

 

( ) ( )
( )

( )
( )

( )
( ) ⋅−

−
−
−

⋅
−
−

−+
−

−
∞

=

∞

+=

∞

+=
∑ ∑ ∑

− n

n

nn inn

in

i

i

i ii ii i

in

exx
exx

exx
exx

exx
exx

,
,

,
,

,
,

1
1

1

12

1

1 1 1 01

0

2

2

1 12 1 1

1


 
( )( ) ( ) ( ) ( )xRxPxRiiixF n

I
nnniii n

+=+∆⋅ 



,, 2121 ,    (25) 

where 

( ) ( ) ( )
( )

( )
( )

( )
( ) ⋅−

−
⋅

−
−

−
−

−=
+

+

− +−

−
∞

=

∞

+=

∞

+=

+ ∑ ∑ ∑
1

1

1 12 1 1

1

,
,

,
,

,
,

1
11

1

1 1 1 01

01

n

n

n

n

nn inn

in

inn

in

i ii ii i

in
n exx

exx
exx
exx

exx
exx

xR 

 
( )( ) xxiiixF nniii n

=∆⋅ +++ 1121 ,,,,
121



 ,    (26) 

is necessary and sufficient for the discrete analog of the substitution rule to hold 

( )( )=∆
kkk iiiiiii xF ,,,, 2121 

( )
( ) ( )( )[ ]

1,,,,
1

11

112121,
,

+=
−

−+

++
∆⋅

−

−
kkkkk

k

k

iiiiiiiii
ikk

ikk xF
exx
exx



 

nk ,1= .      (27) 

Proof. Sufficiency. Let (27) be satisfied. Then, considering (24), the following 

transformations will be valid 

( ) ( ) ( )
( )

( )
( ) ⋅−

−
−
−

−=
−

−
∞

=

∞

+=

∞

+=

+ ∑ ∑ ∑
− n

n

nn inn

in

i ii ii i

in
n exx

exx
exx
exx

xR
,
,

,
,

1
1

1

1 1 1 01

01

1 12 1 1

1


 

( )( )=∆⋅ ∑
∞

+=+

++
1

,,,
1

121121

nn

nn
ii

iiiiii xF


( ) ( )
( )

( )
( ) ⋅−

−

−

−
−−

−

−
∞

=

∞

+=

∞

+=
∑ ∑ ∑

− n

n

nn inn

in

i ii ii i

in

exx
exx

exx
exx

,
,

,
,

1
1

1

1 1 1 01

0

1 12 1 1

1


 

( )( )[ ] ( )( ){ } ( )−=∆−∆⋅ −+=++
xRxFxF niiiiiiiiiiiiii nnnnnn 1,,,1,,, 2121112121   

( ) ( )
( )

( )
( ) ( )( )

nn

n

n

nn

iiiiii
inn

in

i ii ii i

in xF
exx
exx

exx
exx

,,,
1

1

1 1 1 01

0
2121

1 12 1 1

1

,
,

,
,

1


 ∆⋅
−
−

−
−

−−
−

−
∞

=

∞

+=

∞

+=
∑ ∑ ∑

− . 

Substituting the last expression in (25), we obtain 

( ) ( ) ( ) ( )xRxPxRxP n
I

nn
I

n 11 −− +=+ , 
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where on the right-hand side, instead of nx  we substitute x . 

Continuing on, we come to a chain of equalities 

( ) ( ) ( ) ( ) ( ) ( ) =+==+=+ −− xRxPxRxPxRxP I
n

I
nn

I
n 0011   

( ) ( )
( ) ( )( ) ( ) ( )( )∑∑

∞

=

∞

=

=∆−=∆
−

−
−=

1
0

1 01

0
0

1

1111

1 1

1

,
,

i
iiii

i i

i xFxFxF
exx
exx

xF
 

( ) ( )( ) ( ) ( )xFxFxFxF =−+= ∞10 . 

Here, in the last step, we used that ( ) += 01 xx  
( ) 01

1
01 ,, xxxxeexx

p
pp ===−+ ∞

∞

=
∑

 

and the continuity of the operator ( )xF . The sufficiency is proved. 

Necessity. Let representation (25) be true. The conditions (24) guarantee this 

statement. We substitute ( )1121 ,,,, −−
=

nn
xx ξξξξ   into (25) and take from both parts the 

difference 121 −
∆

nξξξ   of the order ( )1−n . Then we obtain 

( )( )=∆
−−− 1121121 ,,,, nnn

xF ξξξξξξξ 

( )
( ) ( )( )[ ]

1,,,,
21

2
121121

1

1

,
,

+=
−−

−

−−

−

− ∆⋅
−

−
nnnnn

n

n xF
exx

exx

inn

inn

ξξξξξξξξξ 

, 

which means we derive a discrete analog of the substitution rule. The theorem is 

proved. 

In the following theorem we consider the conditions for the existence of an 

interpolation operator polynomial of degree n  on a countable number of interpolation 

nodes ( )niix ,,1  , ≤≤≤≤≤ niii 211  ∞≤  of the form 

( ) ( ) ( ) ( ) ++−⋅−+−+= ∑ ∑∑
∞

=

∞

+=

∞

=



1 1
10

1
00

1 12

2121

1

11
,,,

i ii
iiii

i
iin exxexxaexxaaxP

 

( )( ) ( )∑ ∑ ∑
∞

=

∞

+=

∞

+=
−

−

−−−+
1 1 1

110,,,
1 12 1

2121
,,,

i ii ii
iniiiii

nn

nn
exxexxexxa 



   (28) 

for the operator YHF →: . 

Theorem 7. Let the operator ( )xF  satisfy the conditions (24). Then, in order for 

there to be a unique operator interpolation polynomial of the form (28) on a countable 
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number of interpolation nodes ( )n
x ξξξ ,,, 21   , n

n Ω∈ξ  for the operator ( )xF , it is necessary 

and sufficient that a discrete analog of the substitution rule (25) holds. 

Proof. Let there be a discrete analog of the substitution rule (25). Then the 

operator polynomial ( )xPI
n  (28) with elements defined by the formulas 

( ) ( )( )
( )( ) ( )

k

k

k
ikkii

kiii
k

iii exxexxexx
iiixF

a
,,,

,,,1

11201

21

21

21

21
−−−−

∆−
=









,    (29) 

( )00,,,2,1 xFank ==   
will be the only interpolation operator polynomial of the form (28) of the degree n  for 

the operator ( )xF  at a countable number of interpolation nodes ( )kiiix ,,, 21  , 

∞≤≤≤≤≤ niii 211 . It follows from Theorem 6 that the representation (26) holds. 

Let us find the value of the residual term ( )xRn  of the element ( )n
x ξξξ ,,, 21  , where 

nξξξ ,,, 21   are arbitrary positive integers satisfying the inequalities ≤≤ 11 ξ  

∞≤≤≤≤ nξξ 2 . 

Since  

( )
( )

( ) +−+= ∑∑
=

∞

=
−=+

n

s ip
ppssxxiiii

s
n

nn
eexxxx

1
10,,,, ,

,,2,1
121 ξξξ 



 

( )( )∑
∞

= +

−+
1

,,,, 21
nip

ppnn eexx ξξξ 

     (30) 

and  

( )( ) ( )( )
( ) ⋅

−

−
= ∑ ∑ ∑ ∑ ∏

∞

=

∞

=

∞

=

∞

+=

+

= −

−

+ −

−

11 22 1 1

121

21
1

1

1 1

1,,,
,,, ,

,

ξ ξ ξ

ξξξ
ξξξ

i i i ii

n

s iss

is
n

nn nn s

sn

n exx
exx

xR 





 

( )( )
( )nnn xxiiiiii xF

ξξξ ,,2,1121121
|,,,,,,



 =++
∆⋅

, 

then ss i≤ξ ,   ns ,1= ,   1+< nn iξ  and from (30) we obtain the expression 

( ) ( )
( )∑∑

=

∞

=
−=

−+=
+

n

s ip
ppssxxiiii

s
nnn

eexxxx
1

10,,,,,,, ,
21121 ξξξ 



, 

which is independent of 1+ni . Therefore ( )( ) 0,,, 21
=

n
xRn ξξξ  , ∞≤≤≤≤≤ nξξξ 211  and 
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( )( ) ( )( )
nn

xPxF I
n ξξξξξξ ,,,,,, 2121 

= . The uniqueness is obvious. 

The converse statement. Suppose that there exists a unique interpolation operator 

polynomial of degree n  for ( )xF  on a countable number of interpolation nodes 

( )n
x ξξξ ,,, 21  , ∞≤≤≤≤≤ nξξξ 211 , ∈iξ , ni ,1=  of the form (28). 

Then its elements are obviously determined by formulas (29). Let us show that 

the discrete analog of the substitution rule (27) will then hold. From the interpolation 

conditions, we obtain 

( )( ) ( )( )=∆≡∆
−−−−−− 11211211121121 ,,,,,,,,,,,,,, nnnnnn

xPxF I
n ξξξξξξξξξξξξξξ   

( )( ){ +∆=
−−− − 1121121 ,,,,1,,, nnn

xP I
n ξξξξξξξ   
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( ) =
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121121
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i
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ξξξξξξ 
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−
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121121 ,
,

21
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nn exx
exx
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nn

nn

ξ

ξ
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( )( )[ ] ( )( ){ } ( )
( )

1

1

1211211121121 ,
,

21
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,,,,,,1,,,,,,,
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. 

Hence, we derive 

( )( )=∆
−−− 1121121 ,,,, nnn

xF ξξξξξξξ 

( )
( ) ( )( )[ ]

1,,,,
21

2
121121

1

1

,
,

+=
−−

−

−−

−

− ∆⋅
−

−
nnnnn

n

n

ii
inn

inn xF
exx

exx
ξξξξξξξ 

, 

which shows that the substitution rule holds. The theorem is completely proved. 

Remark 4. The interpolation operator polynomial (28), (29) is a Newton-type 

interpolation polynomial in the sense that during the transition from ( )xPI
n  to ( )xPI

n 1+  it 

is only necessary to add a new term to the polynomial ( )xPI
n . 
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Remark 5. The following corollary follows from Theorem 6. We assume that the 

discrete analog of the substitution rule (25) is satisfied for the operator ( )xF  with 

properties (24). Then the interpolation operator polynomial (28), (29) on a countable 

number of interpolation nodes (20) has the property of saving a polynomial of degree 

not exceeding n . The proof follows from the representation (26). 

 

 

11.4. Interpolation operator polynomial of the third degree on a countable set of 

nodes 

 

In the previous subsection, we investigated the polynomial interpolation of 

operators acting from a separable Hilbert space H  into a Banach space Y . For the 

obtained polynomial to be interpolative for the operator ( )xF  it is necessary and 

sufficient that the discrete analog of the substitution rule is fulfilled. However, the 

substitution rule imposes significant restrictions on the operator ( )xF .  

Let us formulate Problem 2 of this subsection. It is necessary to find an operator 

polynomial ( )xP I
3  for the operator ( )xF  that satisfies the interpolation conditions  

( )( ) ( )( ),
321321 ,,,,3 kkkkkk

I xFxP =     ∈∀ ik ,    ,1 321 ∞≤≤≤≤ kkk  

where  – is a set of positive integers, 

( ) ( ) ( ) ( )∑∑∑
∞

=

∞

=

∞

=

−+−+−+=
321

321
,,, 2312010,,

kp
pp

kp
pp

kp
ppkkk eexxeexxeexxxx

   (31) 

is a countable interpolation node; { } ∞= ,1iie , ( ) ,2,1,,, == jiee ijji δ  is an 

orthonormalized basis; ( )⋅⋅,  – a scalar product in H ; ijδ  – Kronecker's symbol; 

3,0, =ixi  – arbitrary fixed elements of H , and ji xx ≠ , ji ≠ . 

First, let us demonstrate the specificity of proving the existence and uniqueness 

theorem of the first degree interpolation operator polynomial on a countable set of 
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interpolation nodes  

( ) ( )∑
∞

=

−+=
1

1
,010

ξ
ξ

p
pp eexxxx

,     ∈1ξ , ( ) ijji ee δξ =∞≤≤ ,,1 1 .    (32) 

Assume that the operator YHF →:  is continuous and that 

( )( )
( )∑

∞

=

∞<
−

∇

1
2

01

2

1 1

11

,i i

Yii

exx

xF

      (33) 

and for all ( ) ,2,1,0, 101 1
=≠− iexx i . We will use the notation from the previous 

subsection. 

Then the operator polynomial of the first degree 

( ) ( ) ( )( ) ( )
( )∑

∞

= −
−

∇+=
1 01

0
01

1 1

1

11 ,
,

i i

i
ii

I

exx
exx

xFxFxP
    (34) 

will be interpolating for the operator ( )xF  on the countable set of nodes ( )1ξ
x . 

First, we verify that the operator (34) is valid for any x  from H . We obtain 
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2
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−

∇
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−⋅ ∑∑
∞

=

∞

=
,  Hx∈∀ , 

which, with condition (33), proves the above, and in addition, the continuity of the 

polynomial ( )xPI
1 . 

More 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )=−+=∆+= ∞

∞

=
∑ xFxFxFxFxFxP
i

ii
I

1

11

111 001 ξ
ξ

ξ

 
( ) ( )( ) ( ) ( )( ) ,2,1, 100 11

==−+= ξξξ xFxFxFxF . 

Here we have used the fact that the operator ( )xF  is continuous and the series 
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( )∑
∞

=

−=−
1

0101 ,
p

pp eexxxx
 is convergent in the norm of the space H , so 

( ) 01
1

lim xx ii
=

∞→ . 

Thus, we have proved that expression (34) is a continuous interpolation 

polynomial of first degree on a countable set of nodes ( )1ξ
x  for the operator ( )xF . 

Theorem 8. We assume that condition (33) is satisfied. In order for an operator 

polynomial 
( ) ( ) ( )∑

∞

=

−+=
1

001
1

11
,

i
ii

I exxaxFxP
 be a continuous interpolation polynomial 

for a functional F  on a countable set of nodes (32), it is necessary and sufficient that 

the formula 

( )( ) ( )( )
( )

1

11

1 ,01

1

i

ii
i exx

xFxF
a

−
−

= +

,     ,2,11 =i  holds. 

Polynomial of the second degree. Let us consider a countable interpolation node 
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Then the operator polynomial of the second degree  
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will be interpolative at the counted node (35), if its components are determined by the 

formulas 
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We obtain 
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which is what we needed to prove. 

The following theorem is valid. 

Theorem 9. In order for the operator polynomial (36) to be interpolative for the 

operator YHF →:  on the countable node (35), it is necessary and sufficient that its 

elements are determined by formulas (37). 

Theorem 10. Let the operator YHF →:  be such that for fixed 10 , xx  and 

arbitrary x  from H  the following holds 
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where xx =2 . Then the correct representation for this operator is 
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The proof is carried out by direct verification. 

Let us proceed to the solution of the formulated problem 2. The interpolation 

polynomial of the third degree will be obtained in the form  
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The following theorem is valid. 

Theorem 11. In order for the polynomial (38) to be interpolative for the operator 
YHF →:  on the countable node (31), it is necessary and sufficient that its elements 

are defined by the formulas 
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The proof is analogous to the previous two cases.  

The following theorem is valid. 

Theorem 12. Let the operator YHF →:  be such that for fixed 210 ,, xxx  and 

arbitrary x from H  the following holds  
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Then the correct representation for this operator is ( ) ( ) ( ) ,22 xRxPxF I +=  where 

( ) ( )
xx

I xpxR
=

=
332 . 

The proof can be found in [5] .  

Remark 6. The interpolating operator polynomial (38), (39) is a Newton-type 

interpolation polynomial in the sense that when we transition from ( )xPI
n  to ( )xPI

n 1+ , 

we only need to add a new term to the polynomial ( )xPI
n . 
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Summary and conclusions 

We find a fundamentally new construction of interpolation operator polynomials 

with the properties of uniqueness and invariance for an abstract Banach space using a 

specially chosen countable sequence of nodes connected with the basis of the space. 

For a certain Banach space [ )∞,0C  using a finite sequence of continuum nodes, a 

second construction with the same properties is found. Interpolation polynomials (of 

integral form) are also constructed, which also possess the property of uniqueness and 

invariance with respect to all integral polynomials of the same degree. 

In a separable Hilbert space H , we prove the existence of a unique, invariant 

interpolation polynomial with a specially chosen countable set of interpolation nodes 

associated with the orthonormalized basis of the space H . 

Necessary and sufficient conditions for the interpolativity of a Newton-type 

operator polynomial of the first, second, and third degrees on a countable set of 

interpolation nodes, which does not require the substitution rule, are obtained. The 

residual term of the interpolation polynomial of the second degree is found.  
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