
Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 73

KAPITEL 5 / CHAPTER 5 5
RESILIENT WEB-APPLICATION SCALING THROUGH INTEGRATED

DATABASE ELASTICITY
DOI: 10.30890/2709-2313.2024-28-00-002

Introduction

This work has focused on the optimization and scaling of web applications,

particularly those that utilize databases. The work covered various deployment

environments, including physical servers, dedicated servers, virtual servers, cloud

systems, and Service Mesh. It highlighted the importance of scalability and fault

tolerance, with an emphasis on autoscaling to improve system responsiveness and

reduce manual configuration.

The work also delved into database management, discussing the challenges of

maintaining stateful databases and ensuring data consistency. The “Sharding + Master-

Slave Replication” method was identified as an effective strategy for database scaling,

allowing for potentially unlimited growth without sacrificing access speed or fault

tolerance.

Service Mesh, particularly Kubernetes, was recommended as the best solution for

scaling web applications due to its flexibility, cost-effectiveness, and alignment with

modern practices like containerization and Infrastructure as Code (IoC). The

conversation concluded that Service Mesh provides the necessary infrastructure to

support long-term user needs and is equipped with autoscaling as a core feature,

making it the most advanced option for deploying and managing web applications.

5.1. Current condition

The history of web resources traces back to the 1990s with the publication of the

first hypertext document on the internet. This marked the beginning of a rapid

5Authors: Korobeinikova Tetiana Ivanivna

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 74

evolution; from simple HTML documents viewed in browsers to the development of

pages with dynamic elements. Today, we witness multiple generations of the World

Wide Web, featuring intricate distributed systems capable of sophisticated calculations

and data processing. These systems, along with additional subsystems, manage

complex software and server operations, all aimed at efficiently handling user

resources. As the world moves faster, the demand for instant information access has

grown, leaving companies that failed to adapt losing their influence in the IT realm [1-

3].

Internet usage and device connectivity have surged, with daily increases in

penetration rates. It's become unimaginable to operate electronics without network

access. This growth trajectory has compelled companies to prioritize product speed and

reliability, necessitating the hiring of top-tier professionals from the inception of

product development. Modern services extend beyond the capabilities of HTML and

CSS, as these technologies alone cannot foster dynamic applications. The focus has

shifted to servers, which are often composed of numerous subsystems, applications,

and microservices. A typical server setup includes at least one application, a web server

for access management, and a database for storing user and system data. Some

configurations may also incorporate queue servers, cache servers, and various other

systems [4-7].

The success of IT projects is gauged by user numbers, which directly influence

revenue. It's common to observe a multitude of users accessing a single application

simultaneously. However, many projects are ill-prepared for organic growth, leading

to system failures under heavy loads. Overload issues manifest as reduced resource

performance, increased errors, equipment malfunctions, and intermittent unavailability

of certain components, all of which diminish uptime—a critical metric that, if

compromised, can drive users to competitors [8].

A dichotomy exists between the continuous growth of users and the need for fault

tolerance in web application development and maintenance. This tension renders the

issue of application overload both pertinent and ripe for exploration in the scientific

domain.

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 75

5.2. Resilience in Overload: Ensuring Stability and Continuity in Web

Applications

When an application is overwhelmed with traffic, it becomes prone to instability,

and the malfunction of any part can lead to prolonged recovery times or even result in

data corruption or loss. An overloaded system often remains offline until a technician

completes the restoration process. Fault tolerance refers to a system's resilience against

unexpected software/hardware malfunctions or issues within the OSI network layers,

ensuring minimal downtime. A fault-tolerant system is designed to remain operational

despite adverse conditions, with the capability for manual or automatic recovery of

non-operational nodes. In contrast, a system lacking fault tolerance cannot

autonomously repair its impaired components following an anomaly [10-12].

Recovery mechanisms in fault-tolerant systems typically involve either a 'run' or

a 'rollback' approach. The 'run' method involves correcting the system's current state to

maintain operation, while 'rollback' entails reverting the system to a prior stable state,

such as through checkpoints, necessitating idempotent operations between checkpoints

and the identified error. Some systems may employ both strategies, depending on the

nature or segment of the error encountered.

Key features of a fault-tolerant system include:

- Multiple restoration points, allowing for failover control to be assumed by an

alternate server if necessary;

– Containment of damage to the affected component;

– Prevention of fault propagation to other systems;

– Availability of rollback options.

Fault tolerance is integral to business continuity, ensuring the high availability of

computer systems and networks. Environments with fault tolerance can immediately

restore services after a shutdown, whereas high-availability environments aim for near-

constant availability, typically around 99.999% uptime.

High-availability clusters consist of independent server groups that collaborate to

facilitate the exchange of vital data and resources across the system. These clusters

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 76

monitor one another's performance and intervene as needed to maintain application

accessibility. On the other hand, a failover cluster involves multiple physical systems

sharing a single server software instance, with commands executed on one system

mirrored on the others.

Redundancy is the cornerstone of fault tolerance, achieved through strategies like

data replication or synchronous volume mirroring to a secondary data center. Physical

redundancy involves keeping additional hardware on standby for swift activation when

required.

Data backup often goes hand-in-hand with redundancy, both serving to safeguard

against data loss. While backups are generally focused on restorative processes over

time, redundancy is tailored for applications with minimal tolerance for downtime. It's

important to note that backups and redundancy serve different purposes and cannot

substitute for one another. A robust failover system architecture should include regular

backups of critical data, potentially complemented by mirroring to a backup or

alternate server. Security measures must also be incorporated into the design to thwart

unauthorized access.

5.3. Scalability and Fault Tolerance: Architecting Resilient Systems in the

Digital Age

As one of the main conditions for building a fault-tolerant system is the presence

of more than one restore point for each component, the development of such a

component is relevant [13-14].

Scalability is an ability of a system to handle an increasing load, by system

resources augmentation. In an economic context, a scalable business model assumes

that a company can increase sales by increasing resources. In computer systems,

scalability is a characteristic of computers, networks, algorithms, network protocols,

programs and applications. For example, the search engine, which supports increasing

the number of users and the number of topics it indexes.

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 77

Scalability can be measured in several measurements, such as [9]:

– Administrative scalability: the ability to increase the number of users to

access the system;

– Functional scalability: the ability to improve the system by adding new

functionalities without disrupting current activities;

– Geographic scalability: the ability to efficient support while area expands

from local to larger;

– Load Scalability: the distributed system ability to expanding/contraction to

handle larger/smaller loads, easely for component to be modified, added,

or removed to meet variable loads;

– Generatoin scalability: the ability of a system to scale using new

generations of components;

– Heterogeneous scalability: the ability to accept components from different

vendors.

There are two types of scaling: horizontal and vertical [9]. Both types may be

used, however, a properly designed system is scaled in two ways at once, it depends

on each component task and needs.

Horizontal scaling means nodes adding/removing to/from the system, for

example, adding a new computer or any other device to distributed software. Another

example is scaling from one web server to three. High-performance computing

programs (for example, the mathematical component of image processing [10, 11],

code sequence processing [12], signal type conversion [13] and many other tasks that

require high computing power) are scaled horizontally to support tasks that would

require huge powers once. Very popular nowadays social networks, exceed the largest

supercomputer powers and handled by scalable systems only. Using this type of scaling

requires software to effectively manage and maintain resources.

Vertical scaling (up/down) means adding/removing resources to/from individual

node (processors, RAM, or non-volatile memory). Vertical scaling is used when

horizontal scaling requires more effort or money. As more elements, as management

complexity increases, so some programs do not scale horizontally.

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 78

Database scalability requires that the database system be able to perform

additional tasks considering larger hardware resources, such as additional servers,

processors, and memory. Workloads continue to grow, and database requirements

follow this trend. Algorithmic innovations include row-level locking and partitioning

of tables and indexes. Architectural innovations include "nothing in common" and "all

in common" architectures to manage multi-server configuration.

In context of data storage scaling, scalability is the maximum storage cluster size

guarantees data consistency, ie there is only one valid version of stored data throughout

the cluster, regardless of the number of redundant copies of data. Clusters that provide

"lazy" redundancy by updating copies asynchronously are called "ultimately

consistent." This type of scaling design is suitable when availability and responsiveness

are rated higher than consistency, that is true for many file hosts or web caches (if you

need the latest version, wait a few seconds for it to spread). This design should be

avoided for all classic transaction-oriented applications.

The most of open and commercial storage clusters based on standard networks

provide only possible consistency (NoSQL, CouchDB, etc.). Recording operations

cancel other copies. Read operations usually do not check every redundant copy before

answering, potentially there are no previous write operations. High metadata signal

traffic requires specialized equipment and short distances to process with acceptable

performance (ie acting as non-clustered storage devices or databases).

In high-performance computing field there are two general concepts of scalability.

The first is strong scalability, which is defined as the change in decision time depending

on the number of processors for a fixed total size of the problem. The second is weak

scaling, which is defined as the change in decision time depending on the number of

processors for a fixed task size per processor.

Autoscaling – is cloud computing method, so the amount of computing resources

in the server farm (which is usually measured by the number of active servers) is

automatically scaled based on the total farm load. Autoscaling is related to and relies

on the idea of load balancing.

Autoscaling offers the following benefits: for companies that have their own web

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 79

server infrastructure, autoscaling usually means that some servers may "fall asleep" at

low load, saving energy (as well as water if water is used as cooler). For companies

with cloud-based infrastructure, autoscaling provides lower bills, as most cloud service

providers charge based on general usage rather than maximum capacity. Even for

companies that can't reduce the total computing power they perform or pay at any

moment of time, autoscaling can helps by allowing companies to work on less time-

consuming workloads on PCs (which are released by autoscaling during low loads).

Autoscaling solutions (Amazon Web Services) can also provide replacement for

problematic server instances, and thus provide some protection against

hardware/software/network failures. Autoscaling can provide greater productivity and

availability in cases where production loads are variable and unpredictable.

Autoscaling differs from having a fixed daily/weekly/annual server usage cycle

because it responds to actual usage patterns, and thus reduces the potential

disadvantage of having too few or too many servers to load traffic. For example, if

traffic is typically lower at night, a static scaling solution may cause some servers to

sleep at night, but this can lead to idle nights when people use the Internet more (for

example, due to viral events, news). On the other hand, autoscaling allows you to better

cope with unexpected load peaks.

Default autoscaling uses a reactive approach to decision-making to scale traffic:

scaling occurs only real-time metrics change. In some cases, especially when changes

occur very quickly, this reactive approach to scaling is insufficient, so the alternative

is automatic scheduling or predictive autoscaling.

Scheduled autoscaling – changes are made due to the minimum/maximum size or

desired autoscaling group power at an exact time of day. Scheduled scaling is useful if

the known traffic load increases/decreases at an exact time of day, but the change is

too sudden with reactive approach.

The autoscaling predictive approach uses predictive analytics. The idea is to

combine recent usage trends with historical usage trends, as well as other types of data

to predict future need for scaling.

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 80

5.4. Stateless Scaling: Optimizing Web Applications for Resilience and Efficiency

Web applications encapsulate core business logic and are ideally designed to be

“stateless,” meaning they do not retain user state within the application. To achieve

this, certain optimizations are necessary for components that traditionally store state:

– Custom Files: User-uploaded files, if stored on the default file system,

compromise the stateless nature of the application. To address this, files

can be moved to a shared file system like GlusterFS or CephFS, which is

straightforward to set up and doesn’t require code changes. However, this

can introduce delays in file distribution and potential issues under heavy

loads. Alternatively, using a third-party service like Amazon S3 offers

automatic file caching and efficient global delivery at a lower cost per

gigabyte than traditional server storage, but it requires additional code to

redirect file operations to the external service.

– Sessions: These are temporary data stores that maintain user identity across

different parts of the application during their session. If a user’s session is

stored on Server_1 and they are switched to Server_2 by a load balancer,

they may be inadvertently logged out. The solution is to store session data

in a central database or a key-value store, with the latter often preferred for

its speed and simplicity, as session data typically doesn’t require the

complex structure of relational databases.

– Shared System Files: Applications may generate specific files to signal

various states, such as lock files. To maintain a stateless architecture, it’s

necessary to refactor the application to use external databases for state

management instead of local files.

Once these considerations are addressed, the application is primed for

containerization and scaling. The next step is to select an HTTP traffic balancing

method:

– Load Balancer: Utilizing a load balancer like nginx can simplify server

selection, filter out bad requests, and monitor the readiness of application

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 81

servers to handle incoming requests. The downside is the need for

installation and configuration, and it typically requires a dedicated server.

– DNS Balancing: This simpler method assigns multiple servers to a single

domain. While configuration options are limited, DNS balancing is useful

for distributing traffic across multiple load balancers, especially when one

is overwhelmed by high traffic.

– OSI Network Layer Traffic Balancing: This method operates at a lower

level in the network stack, offering another approach to distributing traffic.

Each method has its advantages and trade-offs, and the choice will depend on the

specific requirements and constraints of the application infrastructure (fig. 1).

Figure 1 – The web-application uses Load balancer

Authoring

5.5. A combined databases scaling method

Databases inherently store state, including user and system data, necessitating

support for data integrity and consistency during scaling—a complex task. The

fundamental strategies for database scaling are replication and sharding.

Database Replication is the process of duplicating a database instance from a

primary location to another. This technique enables the mirroring of a database from a

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 82

master DBMS to a slave database. There are two replication models:

– Master-Slave Replication: Chosen when the majority of database

interactions are read operations. The master instance serves as the primary

source, with its state replicated to secondary slave nodes. Writes are

directed to the master, while reads can occur on both master and slave

nodes. This model enhances database fault tolerance by maintaining

multiple independent copies of the database. If a slave node fails, it is

readily replaceable. Should the master fail, a slave node is promoted to

master, and a new slave takes its place.

– Master-Master Replication: Allows both read and write operations on any

instance. However, this model is less common and supported by fewer

DBMSs.

These replication strategies are crucial for maintaining the continuous operation

and reliability of database systems during scaling operations (fig. 2).

Figure 2 – DB instances interaction at Master-Slave replication

Authoring

Master-Master replication enables both reading from and writing to any database

instance. However, this replication model is only supported by a select few database

management systems.

Sharding is a technique where data is distributed across different database nodes.

For instance, a database might be configured to hold information for up to 1000 users;

once this threshold is reached, the application transitions to a new database instance.

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 83

These instances operate independently, and the application determines the appropriate

node for each operation. Sharding operates autonomously, but to bolster the fault

tolerance of individual shards, it's often paired with Master-Slave replication. This

combination facilitates virtually limitless scaling of the database infrastructure.

Figure 3 – DB instances interaction at Master-Master replication

Authoring

Figure 4 – DB instances interaction at combining Sharding and Master-

Slave replication
Authoring

The scaling process for applications and databases varies based on the hosting

environment, with autoscaling being a feature exclusive to cloud systems. The

environments for deploying a web application include:

– Physical Server: Situated within the premises of the organization operating

the web application, maintained by its own IT staff. Maintenance tasks

encompass monitoring physical aspects like cooling and cleanliness, as

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 84

well as overseeing the operating system, software updates, and network

security. Typically, a single operating system is installed, and applications

vie for resources under heavy load conditions.

– Dedicated Server: Housed within a data center, the physical upkeep of a

dedicated server is managed by the hosting provider. System configurations

and application management are conducted remotely by the organization’s

administrators, allowing for flexibility in server location.

These environments dictate the scalability options and management practices for

web applications, each with its own set of advantages and logistical considerations.

Figure 5 – Applications on a physical/dedicated server (applications

compete for resources)
Authoring

Scaling applications on physical or dedicated servers typically involves either

upgrading to a more powerful server or adding a new server and redistributing the

applications. Both methods can lead to operational downtime and require careful

planning.

In contrast, cloud environments, which can be public or private, offer a more

flexible approach to application deployment. Public clouds provide services to anyone

on a pay-per-use basis, while private clouds are bespoke solutions managed by a single

enterprise. Cloud applications often run in containers, encapsulating each application

in an isolated environment, which allows for independent scaling and adaptability to

various capacities and settings (fig. 6).

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 85

Figure 6 – Applications in the cloud (applications do not compete for

resources)
Authoring

In cloud computing, the primary offering is virtual server leasing, complemented

by services like database hosting, queue management, and document-oriented storage

solutions. This setup allows for containerized application deployment on virtual

servers, bypassing the need for individual database configuration and containerization.

Cloud-based applications benefit from both horizontal and vertical scaling, which can

be manually adjusted. Additionally, clouds feature autoscaling capabilities that can be

tailored through the management console based on predefined criteria.

Service Mesh represents a higher level of abstraction, enabling the deployment of

containerized applications and services without concern for their connection to the

underlying physical infrastructure. It creates a virtual cluster from any number of

servers, facilitating network, storage, and service discovery abstractions. It also

oversees container lifecycles, ensuring their continuous operation and automatically

restarting them if issues arise. Scaling within a Service Mesh is managed at the

application integration level, with the system dynamically adjusting the number of

active instances in response to fluctuating loads.

Within this ecosystem, applications and ancillary services collaborate to provide

monitoring, logging, and command execution scheduling, all orchestrated through the

Service Mesh framework (fig. 7).

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 86

Figure 7 – Integration of applications and services in Service Mesh, a group

of servers forms a single cluster, applications do not interact with servers

directly
Authoring

Managing the size of a Service Mesh cluster is essential, especially when the

current server group lacks sufficient capacity for scaling. This challenge is addressed

by either expanding the number of active servers or adjusting the size of the server

group, which typically remains on standby. When considering individual applications,

this scaling is referred to as vertical; however, when applied to the cluster as a whole,

it can be either vertical or horizontal, depending on whether the expansion involves

adding more resources to existing servers or incorporating additional servers into the

cluster.

5.6. Load balancing mechanism in the database

Upon thoroughly examining the deployment of web applications, methods for

scaling services, and strategies for preparing projects for scalability, we can identify

key comparative features. Since files must not reside within the application’s file

system to facilitate scaling, alternative file storage solutions must be selected. This

work suggests a unified approach to database scaling that avoids the need for custom

solutions for each project, thereby reducing development and maintenance costs

(tab.1).

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 87

Table 1 – Saving custom files when running the application to provide

scalability

Method Integration Record Reading

GlusterFS /

CephFS
Easy Fast

Delivery delays between

instances may occur

Amazon

S3/Rackspace
Intensive

Recording

delay may

occur

Fast reading from anywhere in

the world

Shared Volume

Service Mesh
Easy Fast Relatively fast

Authoring

The comparative analysis indicates that utilizing a Service Mesh shared volume

offers significant benefits, particularly as an optimal solution for managing shared user

files.

When it comes to selecting a repository for custom sessions, Key-Value stores

like Redis emerge as the preferred choice. Their scalability through clustering and high

read/write speeds, attributed to in-memory data storage, make them highly effective.

The primary drawback is the requirement to implement and maintain a new

service (tab.2).

Table 2 – Saving custom sessions

Method Integration Record Reading Scaling

Saving in a relational database

(MySQL/PostgreSQL)
Easy Slow Slow

Time

consuming

Saving to key-repository

(Redis/Memcached)

Relatively

easy
Fast Fast Easy

Authoring

The ways to host a web-application, you can see a comparison in table 3.

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 88

1) The cost associated with server units can escalate quickly for large-scale

architectures that rely on physical or dedicated servers.

2) While some service providers offer these services, the scope for

configuration is often restricted.

3) Service Mesh stands out for its exceptional flexibility in web application

deployment, enabling rapid initiation and termination of clusters. This

solution, while moderately priced, is cost-efficient due to its precise

allocation of resources, ensuring no wastage.

4) Designed with high performance and reliability in mind, Service Mesh

inherently incorporates autoscaling as a fundamental feature, facilitating

efficient resource management.

Table 3 – Web-application placement methods

Method Cost Easy to set up Flexibility Autoscaling

Physical/dedicated

server
Average Difficult Low No

Virtual server Low Medium Average
Conditionally

absent

Cloud Average Simply High Yes

Service Mesh Average Medium Highest
Works

by default
Authoring

The analysis concludes that for objectives centered around high reliability,

performance, and availability, Service Mesh technologies like Kubernetes are the

superior choice. This approach requires a one-time configuration, after which it offers

ongoing flexibility.

Additionally, it aligns with modern industry practices by containerizing

applications and adopting the Infrastructure as Code (IoC) principle. When it comes to

scaling a primary relational database, it’s crucial to evaluate various aspects, including

application load characteristics and data volume, to determine the most effective

scaling strategy (tab.4).

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 89

Table 4 – Scaling the main database (MySQL/PostgreSQL)

Method Integration Ease of use
Fault

tolerance
Installation

Master-Slave

replication
Easy Average High Relatively easy

Master-

Master

replication

Easy High High Very difficult

Sharding Medium Average Low Medium

Sharding +

Master-Slave
Medium Average High Difficult

Authoring

This document suggests a refined load balancing approach across multiple

database instances, enabling the deployment of numerous instances to guarantee both

speed and fault tolerance under heavy loads. Upon reviewing various database scaling

techniques for optimal stability and performance, the combination of “Sharding +

Master-Slave Replication” emerges as the premier option. Despite its challenges in

terms of integration and setup complexity, this method offers the ability to scale the

database for an unlimited user base while preserving fault tolerance.

Summary and conclusions

This work explores mechanisms to enhance the resilience of standard web

applications that utilize databases, and it addresses potential challenges that may arise

while preparing to scale different components of an application. Scaling is the most

effective strategy for constructing a fault-tolerant web application, and autoscaling can

drastically cut down the time specialists spend on manual system configuration, as well

as reduce the latency in responding to increased user traffic.

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 90

The database presents the most complex challenge in this process. Being stateful,

it requires careful synchronization of distributed data to ensure consistency and

availability. By employing the “Sharding + Master-Slave Replication” approach to

scaling, it’s possible to expand the database size indefinitely without compromising

data access speed, while maintaining the capability for self-recovery in the event of

issues.

For scaling web applications, Service Mesh is the optimal choice due to its ability

to provide a sufficient margin of flexibility that can adapt to user needs over the long

haul.

The work discusses the optimization and scaling of web applications that use

databases, with a focus on scalability and fault tolerance:

– Deployment environments and autoscaling: The document compares

different deployment environments, such as physical servers, dedicated

servers, virtual servers, cloud systems, and Service Mesh, and highlights

the advantages of autoscaling for improving system responsiveness and

reducing manual configuration.

– Database management and scaling methods: The document examines the

challenges of maintaining stateful databases and ensuring data consistency

and identifies the "Sharding + Master-Slave Replication" method as an

effective strategy for database scaling, allowing for potentially unlimited

growth without sacrificing access speed or fault tolerance.

– Service Mesh as the best solution for web application scaling: The

document recommends Service Mesh, particularly Kubernetes, as the

optimal choice for scaling web applications due to its flexibility, cost-

effectiveness, and alignment with modern practices like containerization

and Infrastructure as Code (IoC). The document also suggests that Service

Mesh provides the necessary infrastructure to support long-term user needs

and is equipped with autoscaling as a core feature, making it the most

advanced option for deploying and managing web applications.

The work concludes that scaling is the most effective strategy for constructing a

Intellectual capital is the foundation of innovative development ‘ 2024 Part 3

 ISBN 978-3-98924-043-8 MONOGRAPH 91

fault-tolerant web application, and that autoscaling can drastically cut down the time

specialists spend on manual system configuration, as well as reduce the latency in

responding to increased user traffic. The document also concludes that the combination

of "Sharding + Master-Slave Replication" is the premier option for scaling the

database, while Service Mesh is the superior choice for scaling the web application.

