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Introduction. 

 

The widespread use of composite materials in various fields of industry is due to 

the peculiarities of their structure and mechanical properties. However, the operating 

conditions of these materials, associated in particular with the influence of humidity 

and temperature, lead to the appearance of intra-volume and surface deformations. The 

heterogeneous nature of composite materials, together with their anisotropic 

characteristics and the relative brittleness of the matrix/fibers, results in a complex 

array of failure modes when loaded under static and/or fatigue conditions. These modes 

include transverse matrix cracking, fiber breakage, splitting (matrix cracking along the 

fiber) and delamination. Therefore, optimal use of composite materials requires 

constant monitoring of their structure.  

The non-destructive acoustic emission method makes it possible to monitor the 

condition of structures. Acoustic emission is one of the non-destructive methods 

capable of detecting and monitoring in real time the development of damage and 

destruction of composite materials. The acoustic emission technique makes it possible 

to obtain released energy in the form of transient elastic waves due to the formation 

and development of damage in a mechanically loaded sample. The advantage of this 

non-invasive method is that it only works in passive mode using sensors attached to 

the surface of materials and structures. Advanced acoustic emission analysis typically 

uses additional parameters such as amplitude distribution, RMS values, and waveform 

studies.   

Traditional spectral analysis is often used to analyze acoustic emission signals in 

composite materials. However, for many problems, wavelet analysis is still preferable, 

in which the signal is divided into a series of orthogonal basis functions of finite length. 
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The structure of a wavelet signal, such as, for example, a signal about crack 

propagation, can be analyzed by its local features. Wavelet functions can be thought of 

as a set of basic functions that can separate a signal by time and frequency, so the 

wavelet transform can detect many unknown aspects of the response signal.   

In recent years, many studies of the deformation field in composites have been 

carried out using wavelet analysis of the spectrum of acoustic emission signals. In 

particular, Khamedi et al. [1] used the wavelet transform to identify the failure 

mechanisms of unidirectional carbon-epoxy composites. For this purpose, carbon-

epoxy composites were tensile tested under two different loading conditions, which 

were applied along and perpendicular to the fiber directions, respectively. The authors 

discovered and quantitatively described both two frequency ranges of acoustic 

emission associated with the main mechanisms of interfacial failure, as well as the 

acoustic wave features for additional mechanisms of matrix cracking and fiber 

breakage.   

Kamala et al. [2] was used wavelet transform decomposition to gather time-

frequency-based information from the acoustic emission signals generating during 

fatigue loading of unidirectional carbon fiber reinforced composite. It was determined 

that most of the acoustic energy (95%) was localized in levels corresponding to three 

fixed central frequencies. Results indicate friction-related emissions are associated 

with amplitude levels and have a frequency range of 17% of its maximum value. There 

are indications that matrix related emissions are of high frequency and high acoustic 

energy. 

   Satour et al. [3] proposed new descriptors related to the continuous wavelet 

transform, where the acoustic signals are decomposed and calculated using the 

corresponding wavelet coefficients. In addition, for each matrix deformation 

mechanism, a specific vector composed of wave coefficients was established. This 

vector represents the wavelet coefficients calculated using the continuous wavelet 

transform and the entropy criterion. The authors proposed new possibilities for the 

classification process of unidirectional composites, namely, the center of each class 

was calculated using the k-means algorithm. 
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This work is divided into two parts. The first part highlights the results of the 

analysis of wavelet decomposition of acoustic signals in laminar composites. A 

detailed study of the dynamics of acoustic wave propagation in composites of different 

types of symmetries is presented in the second part. 

 

 

10.1. Wavelet decomposition of acoustic signals.   

 

In this work, the effectiveness of using wavelet transforms for acoustic signals in 

laminar composites was studied using the example of Dmey-, coif 5- and coif 4-

wavelets. Acoustic signals can be decomposed into 8 wavelet components WFi, i = 1, 

2, ..., 8. For each transformation, the results of processing the responses of composite 

structures to acoustic emission signals were used [4]. Wavelet components were 

analyzed separately for eight frequency ranges in the range FW ∈ (0 ÷ 5)⋅105 Hz. The 

width of each sub-band was ∆FW = 6.25⋅104 Hz.  

 
Figure 1 - Spectral distribution E′W = f (FW) for Dmey-wavelet. 
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The analysis showed that the dominant frequencies differ from each other for each 

signal. The reason for this difference may be that each of these dominant frequency 

bands represents different types of damage from which acoustic signals originate.  

The spectral distributions of dimensionless relative energy E′W were studied for 

wavelets of three characteristic shapes: Dmey-, coif 4- and coif 5-. The results are 

presented in Figures 1, 2 and 3. 

 
Figure 2 - Spectral distribution E′W = f (FW) for coif 4-wavelet 

 

The Dmey-wavelet presented the greatest efficiency in restoring spectral energy 

in all selected signal forms. However, the coif 5-wavelet also recovered most of the 

spectral energy, although it is not present among all the selected 8 wavelet 

decomposition modes. Comparing the spectral energy of a large number of signals 

leads to the conclusion that a significantly larger number of signals that have recovered 

most of the spectral energy arise when they are decomposed using the Dmey-wavelet. 

These factors are the reason why the Dmey-wavelet is selected as the best wavelet for 

acoustic signal processing in this study. 

The resulting spectral distribution of Dmey- and coif- wavelets is characterized 
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by the predominant contribution of the k-components WF (k = 1, 6). 

 
Figure 3 - Spectral distribution E′W = f (FW) for coif 5-wavelet. 

 

Based on these facts, a separate analysis of the frequency dependence in matrix 

form was carried out for WFk  
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, 5,...,1,0=i ; 6,1=k .                        (1) 

The α (i, k) coefficients are given in Table 1. 

Spectral dependency analysis suggests that wavelet analysis of acoustic emission 

response signals has the potential to reveal the damage process of composite structures 

because it can differentiate acoustic signals based on frequency and time domain 

characteristics. However, the waveforms are characteristic of loading stages, which, of 

course, is a factor limiting the use of wavelet analysis for detecting damage in 

composite structures. Isolation of the dominant frequency band using the wavelet 

transform using the best wavelet still makes it possible to identify the process of 

destruction of the internal structure of two-component composites, the inclusions in 

which differ in size by no more than an order of magnitude.     
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Table 1 - Binomial coefficients for relative energy. 

(i, k) Dmey-wavelt 

(i, 1) -3.2⋅10-1 -1.2⋅10-2 4⋅10-4 -3⋅10-6 6⋅10-9 -5⋅10-12 

(i, 6) 3.32 -2.7⋅10-1 4.9⋅10-3 -3⋅10-5 6⋅10-8 -5⋅10-11 

 coif 4-wavelet 

(i, 1) -4⋅10-1 1.1⋅10-1 -9⋅10-4 3⋅10-6 -6⋅10-9 4⋅10-12 

(i, 6) -7.3 4.2⋅10-2 1.9⋅10-3 -2⋅10-5 4⋅10-8 -3⋅10-11 

 coif 5-wavelet 

(i, 1) -1.5 2.2⋅10-2 9⋅10-5 -1⋅10-6 4⋅10-9 -3⋅10-12 

(i, 6) -6.7 2.9⋅10-2 2⋅10-3 -2⋅10-5 4⋅10-8 -5⋅10-11 

 

 

10.2. Dynamics of acoustic wave propagation in composites. 

 

The necessary condition for describing the dynamics of acoustic propagation is a 

nonstationary representation of the deformation field of a two-component composite 

structure. Let us consider the propagation of a pulse load acoustic wave, which simulate 

the peak change in the stiffness of a composite material in the form of a rectangular 

beam. The type of load is a narrow peak band sinusoidal base 

( )[ ] ( )tfNtftHBN PPtf 00 2sin/2cos1)()( ππ−⋅∆⋅= ,         (2)                                         

where H(t) is the unit step function, f0 is the constant frequency, NP = const1, B = const2.  

The narrowband pulsed load was used to demonstrate the non-dispersive 

characteristics of this type of load. The definition of narrow and wide bandwidth refers 

to the frequency spectrum of the signals and depends on the ratio of the bandwidth to 

the center frequency.  

It makes sense to use the wavelet approach to find the shortest arrival time for 

various frequency components of the signal. The continuous wavelet transform WT of 

a function is defined by the formula  
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The parameter a represents the scale variable in the wavelet transform, which is 

similar to the frequency variable in the Fourier transform. The value b represents the 

shift parameter. 

 
Figure 4 - Phase velocity of the first acoustic mode in composite A. 

 

Knowing the dependence of the circular frequency ω on the projections kx and  ky 

of the wave vector of acoustic emission onto the Cartesian axes, the phase and group 

velocities are determined from the relations 

kP /ωυ =′ ,    dkdG /ωυ =′                                         (4)  

or in dimensionless version phase velocity  

( ) 5.0
1

22 / EkP ρωυ = .                                             (5)      

The first three wavelet-modes obtained in the calculations are acoustic modes, 

which can also propagate at lower frequencies. The lowest of them corresponds to the 

bending mode, the second to the planar shear of laminar type composite, and the third 
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to the tensile wavelet-mode of composite deformation field. The frequency at which 

the other two modes, known as optical modes, begin to propagate is called the cutoff 

frequency, and these modes are related to wavelet-transforms ψx and ψy, which are the 

rotations of the cross section. 

In this study, the first acoustic mode, which is the lateral deflection, was analyzed 

and its group and phase velocities are shown in Figures 4 and 5 for composite plates.  

 
Figure 5 - Phase velocity of the first acoustic mode in composite B. 

 

For the spectral distribution of the phase velocity of acoustic waves, it is necessary 

to analyze the deformation fields of composite materials with two different types of 

symmetry (the presence, respectively, of two and three axes of symmetry). The 

composite plate with type A has three axes of symmetry around θ = 00, 450, 900, and 

composite plate with type B has two axes of symmetry around θ = 00, 900.  

The phase velocity for a composite of the first type ceases to change significantly 

at ωS = 1.2⋅106. The phase velocities of the second type composite sample practically 

reach saturation at ωS = 1.5⋅106. The numerical value of the saturation frequency for 
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group velocity increases compared to the case of phase velocity and is ωS = 3.2⋅106 for 

the first sample and ωS = 4.3⋅106 for the second sample. 

The maximum change in the phase velocity of acoustic waves occurs in the 

interval of cyclic frequencies ∆ωA ∈ (0.4 – 1.6) for a type A composite. A composite 

with a type B structure with three axes of symmetry forms a phase velocity with a 

maximum change in the range ∆ωB ∈ (0.3 – 1.65). It can be argued that the presence 

of three axes of symmetry in a composite material slightly increases the range of 

frequencies for which the maximum change in phase velocity is observed. 

The intervals for reaching the threshold value for the dispersion dependences of 

the phase velocity are ωm,2 - ωm,1 = 1 and ωm,2 - ωm,1 = 0.5 for composite materials of 

type A and B, respectively.  

The components of the wave vector satisfy the equation  

( )xy kk /arctan=θ ,                                              (6) 

where θ is the wave propagation angle. 

The similarity between the acoustic signal shape in the volume of the composite 

material and the corresponding wavelet function can be assessed using the inner 

product of this function and the recorded signal. When the parameters a and b are the 

values to which the waveform and wavelet function best fit, the calculations yield the 

maximum value of the wavelet coefficient.  

The time shift that maximizes the inner product of the wavelet function for scale 

a and the acoustic signal is the arrival time ∆ t of the acoustic wave, which is related 

to the frequency and scale of the composite material sample 

ta∆= /0ωω ,     taff ∆= /0 .                                 (7) 

Estimating the location of the applied load and the associated local deformation 

requires using the time of arrival of the acoustic wave and the dominant frequency 

content of the signal. These quantities, specified using the presented wavelet approach, 

should form a system of nonlinear equations. For the case of a composite laminated 

composite plate, group and phase velocities values are used for the dispersion relations.     

The position of the composite material sample and the fixation of the registration 
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points of the arrival of the acoustic wave are determined by the triple of angles θ1, θ2 

and θ3, for which a system of nonlinear dispersion relations can be written. The solution 

of this system allows us to determine not only the quantities, but also the corresponding 

Cartesian coordinates of the corresponding local deformation for each frequency. 

 

 

Summary and conclusions.  

  

Have been considered the results of relative energy spectral distributions.  This 

results indicate the preferable use of the Dmey-wavelet for the decomposition of 

acoustic waves. We received the generalized binomial representation for the 

corresponding wavelet transform. A detailed analysis of the spectral dependencies for 

the phase velocities of composite materials with different types of symmetry was 

performed. It was found that an increase in the number of symmetry axes leads to a 

slight increase in the interval for the most rapid change in phase velocity of acoustic 

waves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




