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Introduction 

With the advancement of industry and the process of urbanization, there has been 

an increasing need to transport water resources to cities via pipelines, both from dams 

and underground sources. Population growth has further escalated the demand for 

water resources, while global warming has led to a decrease in these vital resources. 

Given this scenario of rising demand and dwindling supply, it is imperative to transport 

water resources efficiently, minimizing any losses during transit. Water transportation 

and distribution are achieved through either open or closed pipeline networks, each 

with its own set of challenges.  

Failures in these pipeline networks are a common and significant global issue. 

These failures can manifest in two primary forms: leaks and blockages. This study 

concentrates on detecting water leaks within pipeline networks. Leaks can result from 

a variety of causes, including pressure or temperature fluctuations, corrosion, wear and 

tear, and damage caused by third parties. Such leaks can lead to critical problems in 

pipeline transportation systems, making accurate leak detection essential to mitigate 

economic losses and protect the environment [1].  

Therefore, it is crucial to rapidly detect and repair pipeline network failures. 

Prompt and precise intervention in these failures presents a critical decision-making 

challenge. There are two main approaches to detecting failures in pipeline networks: 

physical inspection and mathematical model simulation. Although physical methods 

are highly accurate in identifying the location and extent of failures, they are costly due 

to production stoppages [2]. Conversely, mathematical approaches can theoretically 

detect leaks at a much lower cost. 

Various methods are employed to detect leaks in pipeline networks. Some of these 

methods include acoustic techniques, negative pressure wave measurement, input and 

 
4Authors: Mysak Pavlo Vasylovych, Mysak Ihor Vasylovych 



The level of development of science and technology in the XXI century ‘ 2024                                                      Part 3 

                                      ISBN  978-3-98924-060-5  MONOGRAPH                                                                                                       85 

output value measurements of pressure and fluid velocity, vibration analysis, 

distributed fiber optic sensing, infrared cameras, and lidar systems. Machine learning 

algorithms, such as convolutional neural networks (CNNs) and artificial neural 

networks (ANNs), are increasingly used for leak detection and classification [3, 4]. 

Numerous studies have focused on detecting and localizing leaks in pipeline systems, 

contributing to a growing body of literature on machine learning applications for this 

purpose. However, research on machine learning methods for pipeline leak detection 

remains limited and under-explored. 

A review of the literature reveals that studies on detecting leaks in pipelines using 

machine learning methods can be categorized into five main approaches. The machine 

learning models employed in these studies are as follows: 

1. Negative Pressure Wave (NPW) Method: A wireless sensor network-based 

machine learning (WML) algorithm was utilized for this method. 

2. Acoustic-Based Model: This method includes support vector machines (SVM), 

neural networks, artificial neural networks (ANNs), as well as a combination of SVM 

and Relevance Vector Machine (RVM) for leak detection. 

3. Thermal Infrared (IR) Camera-Based Method: This approach utilized immune 

neural networks and convolutional neural network (CNN) techniques for leak 

detection, with some studies specifically focusing on petroleum pipelines. 

4. Pressure-Monitoring Methods: These methods employed the sparrow search 

algorithm (SPSA) and CNN for leak detection in petroleum pipelines, along with a 

deep-learning method known as Deeppipe. 

5. Fluid Transient Waves Method: This method utilized artificial neural networks 

(ANNs) and a machine learning (ML)-based framework for leak detection. 

In summary, while significant strides have been made in detecting and addressing 

pipeline leaks through various methods, the integration of machine learning offers 

promising potential. Continued research and development in this area are essential to 

enhance the efficiency, accuracy, and cost-effectiveness of leak detection and repair in 

pipeline networks, ultimately contributing to better resource management and 

environmental protection [5, 6]. 
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This academic literature review underscores the application of various machine 

learning algorithms for detecting leaks in pipelines. It demonstrates the effectiveness 

of different methods and encourages further research to enhance leak detection 

techniques. The reported accuracy rates for pipeline fault diagnosis using machine 

learning algorithms range from 78.51% to 99%. Theoretical representation of many 

complex systems encountered in real life can be challenging, but graph structures 

provide a viable solution. 

Numerous structures, including airline networks, banking systems, social 

networks, medical systems, and supply chains, can be effectively represented using 

graph structures. For instance, intricate systems like distribution networks with 

multiple pipeline convergence or divergence points can be depicted through graphs. In 

the literature, pipeline networks are often represented using graphs, capturing the 

spatial correlations of the network with models such as the Graph Convolutional 

Network (GCN). 

In this study, water-carrying pipelines are represented using graphs. The pressure 

values at specific points on the pipeline are visualized over time by modeling and 

observing pressure drops. The graph-based machine learning algorithm GCN is 

employed to detect pipeline leakage scenarios. Pipeline networks are rarely limited to 

a single pipeline; water distribution networks, for example, often feature multiple 

pipelines converging or diverging. Graph data structures offer advantages over 

traditional data structures in representing these complex systems. 

Conventional machine learning models like Support Vector Machines (SVM) and 

Artificial Neural Networks (ANNs) often fail to account for the inherent dependencies 

among nodes and edges in pipeline networks. However, recognizing that a leakage in 

one pipeline can affect interconnected pipelines is crucial. This study proposes an 

approach leveraging graph data structures to represent pipeline networks effectively, 

utilizing GCN as a graph-based machine learning model [7]. GCN can capture and 

account for the interdependencies between nodes and edges, enhancing accuracy and 

predictive capabilities tailored to pipeline networks. 

In the literature, GCN studies generally focus on object recognition and 
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classification, achieving accuracy rates of 75% in urban pipeline networks, 94% in 

image processing, 88% in customer product recommendations, and 86% in fault 

detection on steam turbines. This study aims to predict leaks by monitoring pressure 

drops in water-carrying pipelines, focusing on accurately detecting pipeline leaks. 

In this research, the network structure of pipelines is represented using graph 

representations, and the GCN model is utilized. GCNs offer an advantage in capturing 

the intricate relationships among pipeline connections. Data for the GCN algorithm 

were collected from a test set using experimental methods, where a leakage scenario 

was deliberately created. Two datasets, edge and node, were specifically constructed 

for this purpose. The performance of the GCN algorithm in leak detection was 

compared with existing studies in the literature, with a particular focus on a 

comparative analysis with traditional machine learning methods, notably using the 

SVM algorithm as a reference. 

Given the escalating demand for water resources and the concurrent decline in 

availability, preventing leaks in pipeline transportation systems has become 

paramount. Detecting leaks facilitates prompt intervention, maintenance, and repair, 

minimizing economic losses and mitigating environmental impact. The findings of this 

study highlight the efficacy of the GCN algorithm in water leakage detection and 

underscore the potential of graph-based machine learning in tackling complex 

problems. 

 
 
4.1. Materials and Methods 

 

This study utilized graph-based machine learning algorithms, specifically Graph 

Convolutional Networks (GCN) and Support Vector Machines (SVM). These 

algorithms were implemented using various Python libraries, including StellarGraph, 

Pandas, NumPy, Scikit-learn (Sklearn), TensorFlow, IPython, Matplotlib, and Pyvis. 

The performance evaluations of the GCN and SVM algorithms were conducted 

using several metrics: confusion matrix, accuracy, precision, recall, and F1 score. 

These metrics provide a comprehensive assessment of the models' performance, 



The level of development of science and technology in the XXI century ‘ 2024                                                      Part 3 

                                      ISBN  978-3-98924-060-5  MONOGRAPH                                                                                                       88 

allowing for a detailed analysis of their strengths and weaknesses in detecting pipeline 

leaks. 

To prevent overfitting, the GCN algorithms were implemented with early-

stopping methods. Early stopping is a regularization technique that terminates training 

when the performance on a validation set begins to deteriorate, ensuring that the model 

maintains its ability to generalize to unseen data [8]. 

In our lives, non-Euclidean structured data exist in various forms, such as 

molecular structures in chemical analysis, sensor networks in communication 

networks, and social networks in social sciences. Traditional convolutional neural 

networks (CNNs) struggle to perform local feature extraction on graph data due to the 

unstructured nature of these data and the unique surrounding structure of each node. 

Despite these challenges, researchers are eager to extend deep learning models to non-

Euclidean domains, given deep learning's proven efficacy in addressing a wide range 

of problems in acoustics, computer vision, and natural language processing. 

Recently, there has been an increasing focus on using deep learning methods to 

analyze graph data. These methods can be broadly categorized into two main 

approaches. The first approach involves embedding nodes in a low-dimensional vector 

space to learn a uniform length representation for each node, with network embedding 

being a representative example. The second approach applies various deep learning 

models directly to graph data, which can be further divided into five categories based 

on model structure and training strategy: graph recurrent neural networks, graph 

convolutional networks (GCNs), graph autoencoders, graph reinforcement learning, 

and graph adversarial methods. Among these, GCNs have emerged as a particularly 

prominent branch of graph deep learning models [9]. 

GCNs function similarly to CNNs in that they act as feature extractors. Unlike 

traditional deep learning models such as CNNs and recurrent neural networks, GCNs 

can process non-Euclidean structured data. The concept of graph convolutional 

operations originates from the field of graph signal processing. Bruna et al. first 

proposed a CNN formula for graphs, defining convolution in the spectral domain based 

on the graph Laplacian. Subsequent contributions by Duvenaud et al., Kipf and 
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Welling, and Atwood and Towsley introduced various GCN models that replaced 

traditional graph filters with adjacency matrices featuring self-loops. These models 

used propagation rules to calculate the output of each neural network layer during 

weight updates. Defferrard et al. extended this framework by incorporating fast local 

spectral filters and efficient merging operations. 

In recent years, the application of convolutional techniques to graphs has surged, 

leading to the development of numerous GCN-related models. Graph convolution can 

be categorized into two main branches: spectral convolution and spatial convolution. 

When a polynomial spectral kernel is used, these two approaches can overlap. Spectral 

domain GCNs are powerful but have several limitations: 

1. Scalability: The training of GCNs requires knowledge of the adjacency matrix 

for all training and test nodes, making the process transductive and unsuitable for large-

scale graphs. 

2. Graph Type Restrictions: Spectral domain GCNs are limited to undirected 

graphs because the Laplacian matrix used requires matrix symmetry for 

eigendecomposition, a prerequisite for spectral convolution. 

3. Layer Depth: GCNs are typically confined to shallow layers. Each GCN layer 

performs Laplace smoothing, and adding multiple layers can result in overly similar 

node attributes within the same connected component, leading to excessively smooth 

output features. 

Many recent studies aim to address these limitations. The spatial domain graph 

convolution method, for instance, compensates for some shortcomings of spectral 

domain GCNs by saving memory at the cost of time efficiency, resulting in higher 

complexity. Recent research has made significant progress in handling large-scale 

graph data, directed graphs, multiscale graph tasks, dynamic graphs, and relational 

graphs. 

Support Vector Machines (SVM). Support Vector Machine (SVM) is one of the 

most popular supervised learning algorithms, used for both classification and 

regression problems. However, it is primarily utilized for classification tasks in 

machine learning. 
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The primary objective of the SVM algorithm is to find the optimal hyperplane 

that can effectively segregate an n-dimensional space into distinct classes. This allows 

for the accurate categorization of new data points in the future. The optimal decision 

boundary created by SVM is known as the hyperplane (fig. 1). 

 
Figure 1 - Hyperplane and Support Vectors in the SVM Algorithm 

 

SVM identifies the extreme points or vectors that assist in forming this 

hyperplane. These extreme cases are termed support vectors, giving the algorithm its 

name, Support Vector Machine. For instance, consider a scenario where there are two 

distinct categories classified using a decision boundary or hyperplane.  

To illustrate SVM, imagine we encounter a peculiar animal that shares 

characteristics of both cats and dogs. We want to create a model that can accurately 

identify whether this creature is a cat or a dog. By using the SVM algorithm, we train 

our model with numerous images of cats and dogs, allowing it to learn their 

distinguishing features. When we test the model with this unusual creature, the support 

vectors create a decision boundary between the data (cats and dogs) and identify the 

extreme cases. Based on these support vectors, the model classifies the creature 

correctly as a cat. 

SVM algorithms have diverse applications, including face detection, image 

classification, and text categorization. 
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Types of SVM 

1. Linear SVM: Linear SVM is used for linearly separable data. If a dataset can 

be classified into two classes using a single straight line, it is termed linearly separable 

data, and the classifier used is called a Linear SVM classifier. 

2. Non-linear SVM: Non-linear SVM is used for non-linearly separable data. If a 

dataset cannot be classified using a straight line, it is termed non-linear data, and the 

classifier used is called a Non-linear SVM classifier. 

 Hyperplane and Support Vectors in the SVM Algorithm 

Hyperplane: In n-dimensional space, there can be multiple decision boundaries 

or lines that segregate the classes. The goal is to identify the best decision boundary 

that classifies the data points effectively. This optimal boundary is known as the 

hyperplane of SVM.  The dimensions of the hyperplane depend on the number of 

features present in the dataset. For instance, if there are two features, the hyperplane 

will be a straight line. If there are three features, the hyperplane will be a two-

dimensional plane. The hyperplane is always created to have the maximum margin, 

which is the maximum distance between the data points of different classes. 

Support Vectors: Support vectors are the data points or vectors closest to the 

hyperplane and influence its position. These vectors support the hyperplane, hence the 

name support vectors. 

SVM algorithms have diverse applications, including face detection, image 

classification, and text categorization.  

 

 

4.2. Empirical Study 

 

This study conducted an experimental investigation to obtain the necessary 

datasets for the proposed GCN and SVM algorithms, aiming to predict pipeline leaks. 

The experimental design and implementation phase consisted of four main steps: 

1. Research Design 

2. Selection of Data Collection Methods 
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3. Data Collection Process 

4. Data Recording 

During the research design phase, the data to be collected (such as pressure and 

flow rate) were identified. The experimental dataset was prepared based on a created 

leak scenario, and the sensors were calibrated accordingly. The limitations and 

constraints of this research were also identified. 

Research Limitations 

1. The system is assumed to be represented by eight pressure sensors and two flow 

meters. 

2. The experimental setup and measurement instruments are assumed to be 

unaffected by external factors such as heat, vibration, noise, and light. 

3. The region's characteristics where the experimental setup is located, such as 

altitude, are assumed not to affect measurement precision. 

4. The PVC pipe used in the experimental setup is assumed to represent other pipe 

types used in transmission lines. 

5. The findings are limited to the data obtained from the experimental setup. 

6. The representation of liquid fluids is limited to water, used in the experimental 

setup. 

7. The pressure measurements are limited to the eight pressure sensors, two flow 

meters, and PVC pipes used in the experimental setup. 

An experimental setup was designed to create datasets required for operating 

graph-based machine learning algorithms. A leakage scenario was created to represent 

potential leakage situations. The data collection method and recording processes were 

meticulously planned. During the selection of data collection methods, the nature and 

volume of the data were considered to ensure accurate and consistent data collection 

[10]. A 12-channel data acquisition card, recording ten data points per second, was 

used for data recording. The recorded data were transferred to electronic spreadsheets, 

and any incorrect or missing data were identified and corrected. For graph-based 

machine learning algorithms, the obtained data must be represented by nodes and edges 

[11]. In the experimental dataset, the pressure sensors represent the nodes, and the 
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connections between these sensors represent the edges [12]. A total of eight pressure 

sensors were used in the dataset. The dataset was standardized using the Python 

programming language and the Sklearn and StandardScaler libraries, as the 

measurement intervals for variables such as flow rate and pressure differed. 

Additionally, the dataset was normalized using the MinMaxScaler library, as artificial 

intelligence models perform more efficiently with values ranging between 0 and 1. 

 

 

Conclusion 

 

When reviewing the literature, it was found that machine learning algorithms have 

been utilized for fault diagnosis in pipeline systems, yielding accuracy rates ranging 

from 78.51% to 99%. However, it is notable that non-graph-based machine learning 

models, such as SVM, ANNs, RVM, CNN, SPSA, and WML, have been 

predominantly employed for predicting and detecting leaks in pipelines. 

In this study, the GCN model achieved a detection accuracy of 95% for leak 

conditions, 94% for risky situations, and 100% for normal situations [13]. The SVM 

(Support Vector Machine) model was used as a reference to determine the GCN 

model’s effectiveness. The SVM model achieved a detection accuracy of 81% for 

leaks, 82% for risky conditions, and 100% for normal conditions. Overall, when 

comparing the performance of the two models (considering leaks, risky conditions, and 

normal conditions), SVM achieved an accuracy of 87%, while GCN achieved 94% 

accuracy [14]. 

Conclusions Based on the Findings 

1. Water Resource Management and Sustainability: The results have significant 

implications for water resource management, reducing water losses, and promoting 

sustainable living.    

2. GCN Model's High Accuracy: The GCN model demonstrated high accuracy 

and performance in predicting pipeline water leaks, including leaks and risky 

conditions. The results highlight the effectiveness of the graph-based machine learning 
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model. The high accuracy of the GCN model in detecting risky conditions is crucial 

for early leak detection and preventive maintenance planning. Situations labeled as 

risky indicate the need for action to prevent leaks, allowing for proactive intervention 

and maintenance to prevent major leaks. 

   3. Performance in Normal Conditions: Both GCN and SVM models exhibited 

equally good performance in detecting normal conditions. 

   4. GCN Model Superiority: The GCN model outperformed the SVM model 

when comparing the prediction results for leaks and risky conditions. The GCN 

algorithm’s ability to analyze edge and spatial relationships significantly enhanced leak 

detection. 

The results indicate the potential of graph-based machine learning methods in 

solving complex problems such as detecting water leaks in pipelines. Based on the 

experience gained from this study, future research aims to replicate this study with 

other graph-based machine learning algorithms, such as GraphSAGE, HinSAGE, 

RGCN, GAT, SGC, PPNP, APPNP, and Cluster-GCN. This replication will focus on 

detecting leak locations and predicting leak and blockage situations in pipeline systems 

with gaseous fluids. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 




