
Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 84

KAPITEL 5 / CHAPTER 5 5
SEARCHING FOR SOLUTIONS FOR SERVER IMPLEMENTATION OF

DIGITAL SIGNATURE IN AN AUTOMATED DOCUMENT
MANAGEMENT SYSTEM

DOI: 10.30890/2709-2313.2024-33-00-010

Introduction

In an increasingly digitalized world, secure and efficient document management

has become essential for modern organizations. Implementing digital signatures within

electronic document management systems facilitates workflow and enhances security

by ensuring document authenticity, integrity, and non-repudiation. The effectiveness of

such systems depends on robust cryptographic methods and structured management of

both private and public keys. This research addresses the current challenges and

proposes an optimized digital signature implementation approach, focusing on

symmetric and asymmetric encryption methods. Through this work, we aim to improve

document processing efficiency and security in electronic document management

systems [1].

Relevance of the Research Topic: Achieving the objectives of any organization

reflects the efficiency of its information management system, particularly in aspects of

human resources management. Automated document processing is key for companies’

and enterprisesʼ effective operation and continuous development. A significant element

of this process is the digital signature module, which enhances convenience, speeds up,

and reduces the costs of document signing. Therefore, there is a need to analyze and

improve methods and tools for implementing digital signatures in a specialized

document management system. The primary focus is improving the document

processing workflow by developing and implementing a new digital signature module

for the electronic document management system.

Purpose of the Research: This research aims to increase the efficiency of the

electronic document management system by implementing a digital signature

subsystem.

5Authors: Korobeinikova Tetiana Ivanivna

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 85

5.1. Understanding Digital Signatures and Their Implementation

Concept of Digital Signatures and Their Realization

A digital signature (DS) is an electronic document attribute designed to protect it

from forgery. It is generated by cryptographic transformation using a private key,

enabling the identification of the certificate owner and confirming that no information

distortion has occurred in the document, thereby ensuring the signatory's non-

repudiation [2].

Digital signatures are often used with hash functions, verifying that the message

remains unchanged. Hash functions produce a fixed-size string (message digest) based

on the content, where even minor changes in the text will alter the digest. The process

of applying a hash function includes several steps:

1) Before sending, the message is processed through the hash function,

producing a compressed digest without altering the original text, which

remains encrypted for secure transmission.

2) The resulting digest is encrypted with the sender's private key (signed with the

DS) and sent to the recipient.

3) The recipient decrypts the digest using the sender's public key.

4) The recipient processes the message with the same hash function to obtain the

digest. If both digests match, the message has not been altered.

There are several widely used hash functions: MD5, SHA-1, etc. A digital

signature scheme generally includes the following components:

− Key pair generation algorithm for users,

− Signature computation function,

− Signature verification function.

There are two primary digital signature schemes:

1) Symmetric Encryption-Based Schemes: This scheme involves a trusted third

party, an arbitrator, who authorizes the document by encrypting it with a secret

key.

2) Asymmetric Encryption-Based Schemes: These schemes are more widely

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 86

used and applicable. Besides, other types of digital signatures (group

signatures, undeniable signatures, trusted signatures) also exist and have been

modified to meet various needs.

Symmetric Scheme for Digital Signatures [3].

The cryptographic strength of symmetric encryption schemes depends on the

selected algorithm. For a symmetric (single-key) algorithm to be reliable, it should

meet specific properties:

− Algorithm Strength: It must prevent decryption without a key, relying on

statistical regularities or other analysis methods.

− Confidentiality Dependence: Security should depend on the key's

confidentiality, not the algorithm's. Specialists should verify the algorithm to

rule out weak spots.

− Key Confidentiality: The algorithm must not compromise the key, even if

numerous plaintext-ciphertext pairs are available.

Symmetric schemes are known for fast encryption and decryption, making them

suitable for quickly encrypting large data volumes while ensuring confidentiality,

authenticity, and integrity.

5.2. Types of Symmetric Algorithms

Symmetric encryption algorithms are categorized into:

− Block Ciphers: These encrypt data in blocks (64 or 128 bits in DES or AES, for

example), processing them with a set sequence, often including several hashing

and substitution rounds.

− Stream Ciphers: Here, each bit or byte of the plaintext is encrypted using a

sequence of pseudorandom bits.

Standard symmetric encryption algorithms include AES, DES, IDEA, Blowfish,

RC4, RC5, and RC6.

Asymmetric Digital Signature Scheme. Asymmetric digital signature schemes are

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 87

part of public-key cryptography. Unlike asymmetric encryption, which uses a public

key for encryption and a private key for decryption, digital signature schemes sign

documents with a private key and verify them with a public key.

A typical digital signature scheme involves three processes:

1) Key Pair Generation: A private key is randomly selected, and the

corresponding public key is calculated.

2) Signature Generation: The private key generates a signature for a specific

electronic document.

3) Signature Verification: The document and signature are validated using the

public key to confirm the signature's legitimacy.

To ensure the usefulness of digital signatures, two conditions must be met:

− The signature must be verifiable with the public key corresponding to the

private key used for signing.

− It should be computationally challenging to forge a legitimate digital

signature without the private key.

Types of Asymmetric Algorithms. To maintain security, asymmetric digital

signature algorithms rely on complex computational problems, such as:

− Discrete Logarithm Problem (EGSA)

− Factorization Problem (RSA)

Digital signature algorithms are generally divided into regular digital signatures

and document-recoverable signatures. Document-recoverable digital signatures

automatically restore the document during verification, unlike regular signatures,

which require attaching the document to the signature. For example, RSA can be used

for document-recoverable signatures [4].

RSA Algorithm Overview. The RSA algorithm is an asymmetric cryptographic

algorithm that operates using two keys: public and private keys. The public key is

accessible to anyone, while the private key remains confidential.

Here’s a typical use case:

− The client sends a public key to the server and requests some data.

− The server encrypts the data with the client’s public key and sends it back.

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 88

− The client decrypts the data using their private key.

RSA Key Generation Steps:

1) Select two large prime numbers, 𝑝𝑝 and 𝑞𝑞.

2) Compute 𝑛𝑛 = 𝑝𝑝 ∗ 𝑞𝑞

3) Choose a public key 𝑒𝑒 such that 𝑒𝑒 is not a factor of (𝑝𝑝 − 1) ∗ (𝑞𝑞 − 1).

4) Compute a private key 𝑑𝑑 such that 𝑒𝑒 × 𝑑𝑑 ≡ 1𝑚𝑚𝑚𝑚𝑚𝑚  (𝑝𝑝 − 1)(𝑞𝑞 − 1) = 1 or

𝑑𝑑 is the modular inverse of 𝐸𝐸 modulo (𝑝𝑝 − 1)(𝑞𝑞 − 1).

In RSA, 𝑑𝑑 is private; 𝑒𝑒 and 𝑛𝑛 are public:

1) Alice creates her digital signature by calculating 𝑆𝑆 = 𝑀𝑀𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛,

where 𝑀𝑀 is the message.

2) Alice sends the message 𝑀𝑀 and the signature 𝑆𝑆 to Bob.

3) Bob computes 𝑀𝑀1 = 𝑆𝑆𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛.

4) If 𝑀𝑀1 = 𝑀𝑀, then Bob accepts the data sent by Alice.

5.3. Management and Storage of Public and Private Keys

Public Key Management: A crucial issue in public-key cryptography, including

digital signatures, is managing public keys. Since public keys are accessible to all, a

mechanism is needed to verify their authenticity. This mechanism must allow any user

to access the genuine public key of another user, protect these keys from malicious

substitution, and facilitate key revocation if compromised.

This issue is addressed with certificates. Certificates authenticate data about the

key owner and their public key through the signature of a trusted party. Certificate

systems can be centralized or decentralized. In decentralized systems, a trusted

network is built by cross-signing certificates between trusted individuals. Centralized

systems rely on certification authorities (CAs), which generate private keys and

certificates for end users, verify their authenticity with a digital signature, and manage

certificate revocation records.

Private Key Storage: The private key is the most vulnerable part of a digital

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 89

signature system. If an attacker obtains a user’s private key, they can sign any document

in their name. Thus, careful attention must be given to private key storage methods.

Users can store their private key on their personal computer, protecting it with a

password. However, this approach depends entirely on the computer's security and

restricts the user to signing documents only on that device .

Currently, private keys are often stored on devices like:

− Floppy disks

− Smart cards

− USB drives

− Touch Memory tokens

The loss or theft of such devices is usually quickly noticeable, allowing the user

to revoke the relevant certificate immediately. The most secure method is storing the

private key on a smart card, which requires both possession of the card and a PIN code,

providing two-factor authentication. The document or its hash is sent to the card’s

processor for signing, and the private key is never copied or exposed outside the card.

5.4. Analysis of Signature Forgery Attempts

Attempts to forge a digital signature or signed document are called "attacks" in

cryptanalysis. Standard attack models and their possible outcomes include:

− Public Key Attack: The cryptanalyst only has access to the public key.

− Known Message Attack: The attacker possesses valid signatures for known

documents.

− Adaptive Chosen Message Attack: The attacker can obtain signatures for

documents they choose.

− Complete Signature Break: Obtaining the private key equates to a complete

algorithm compromise.

− Universal Signature Forgery: Discovering an algorithm that can forge

signatures for any document.

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 90

− Selective Signature Forgery: Forging signatures for specific documents

chosen by the cryptanalyst.

− Existential Signature Forgery: Producing a valid signature for an arbitrary

document without pre-selection.

Among these, the adaptive chosen message attack is considered the most critical,

as modern digital signature algorithms are designed to resist it through computationally

secure processes.

5.5. Digital Signature Methods

A digital signature encompasses a broad range of methods applicable to electronic

documents to capture signing intent and approval and, to various extents, ensure

document authenticity, integrity, and non-repudiation. When implemented according

to relevant laws and regulations, a digital signature can carry the same legal weight as

a handwritten signature on a paper document.

Most documents are now generated on digital platforms and managed

within Electronic Document Management Systems (EDMS). These systems support

adequate document storage, organization, and transmission on electronic platforms.

Digital signatures enhance EDMS by allowing documents to be signed electronically,

eliminating the need for paper-based processes. The core feature of digital signatures

within EDMS is non-repudiation, ensuring that the signature cannot be denied once

affixed.

Digital Signature in Browser Applications. Electronic document management

systems typically operate within browser-based environments containing server and

client applications that communicate through network protocols. Users interact with

the application via web browsers and an interface that houses the client application.

Digital signature applications need to access data from a digital signature USB key.

Each individual has a unique USB key. The client application must be able to

access hardware resources, but this access depends on the browser's permissions. Most

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 91

browsers do not natively support access to computer hardware, which is often

addressed using third-party programs that work within the browser, such as Java

applets.

A Java applet is a small program written in Java or another programming

language, compiled into Java bytecode, and delivered to users in this form. Users run

the applet from a web page, which executes within the Java Virtual Machine (JVM)

separately from the web browser. By using Java applets, users can sign documents

directly in the browser. The applet detects hardware changes on USB ports and allows

users to enter a password to access the digital signature key. Once entered, the applet

signs the document digitally and submits it to the server for storage.

5.6. Digital Signature in Desktop Applications

In some cases, running Java applets in a browser is either restricted or not best

practice. While Java applets provide a convenient way to sign documents through the

browser, popular browsers are phasing out support for the Netscape Plugin Application

Programming Interface (NPAPI) required for Java applets. Additionally, granting

browser access to hardware and local files raises security concerns. Desktop

applications offer a solution in these cases, though each computer must install the

software, and each update requires reinstallation.

The user logs in using a desktop application with a username/password or digital

signature credentials. Once authorized, the application retrieves data from the server

and displays documents awaiting signatures. The user then connects their USB key,

and the application reads data from the key, allowing them to enter a password for

signature authorization. The document is signed with a digital signature and sent back

to the server. Desktop applications can also verify digitally signed documents, showing

the signer’s identity and timestamp if available, adding a layer of validity.

Modern API Development Technologies. Today, the popularity of web services

and platforms largely depends on the internal structure and hierarchy of the software.

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 92

Developing an efficient, high-performance API enables easy integration into other

services and applications. A well-organized backend is critical for seamless

functionality expansion and scalability. Providing an API allows developers to

popularize the product, identifying new use cases and applications [5].

Microservice Architecture. Microservices represent an architectural approach to

building applications from small to large scales. With this approach, the application is

divided into small, independent components. Unlike monolithic architectures, where

all functionalities are embedded into a single project/application, microservices enable

modular development, allowing all modules to work together to fulfill specific target

tasks.

This software architecture offers greater modularity, flexibility, and the ability to

reuse similar functions across multiple applications.

Benefits of microservices include:

− Faster Development: By dividing the application into smaller modules,

development time is reduced, enabling quicker changes to existing software

functionalities and more straightforward issue resolution in production.

− High Scalability: As user demand for certain services grows, those services

can be deployed on multiple servers and infrastructures. Load balancing can

efficiently handle the increased service demand from end users.

− Resilience and Independence: Independently developed services ensure that

failure in one does not disrupt the entire application, unlike in monolithic

models.

− Easier Deployment: Microservices-based applications are more modular,

reducing deployment issues.

− Ease of Development: As larger applications are divided into smaller

modules, developers can more easily understand, update, and improve

functionality.

− Openness: Microservices do not depend on a specific language or

technology, allowing developers to choose the best options.

REST Architectural Style. REST API (Representational State Transfer API) refers

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 93

to APIs that follow REST design principles. REST was defined in 2000 by computer

scientist Dr. Roy Fielding in his dissertation and offered high flexibility and freedom

for developers, making RESTful APIs a common choice for connecting components

and applications in a microservices architecture.

At its simplest, an API enables a program or service (client) to access resources

in another program or service (server). REST APIs are known for their adaptability,

support various data formats, and allow communication over HTTP.

The six main REST architectural constraints are:

1) Uniform Interface: Ensures consistent API request formats regardless of the

source.

2) Client-Server Independence: The client needs only the URI of the resource;

the server handles the data processing.

3) Statelessness: Each request must contain all necessary information without

relying on server sessions.

4) Cacheability: Resources should be cacheable on the client or server side to

boost performance.

5) Layered System Architecture: Requests pass through different layers,

preventing the client or server from directly connecting.

6) Code on Demand (Optional): REST APIs may sometimes send executable

code (like Java applets) that runs on demand.

REST APIs use HTTP requests to perform standard CRUD operations–Create,

Read, Update, Delete–on resources. A well-designed REST API operates like a

website, functioning seamlessly within a web browser with inherent HTTP capabilities.

5.7. Solutions for Server Implementation of Digital Signature in an Automated

Document Management System

Tasks formulation for digital signature use in Electronic Document Management

Systems are shown in this section. The education sector, particularly universities, has

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 94

increasingly adopted digital solutions, including digital signatures, to facilitate remote

administrative tasks and expedite signing official documents. Universities handle

numerous documents requiring signatures, such as departmental protocol extracts.

Digital signatures provide a reliable solution to protect these confidential documents

[7].

Using digital signatures simplifies, automates, and digitizes standard

administrative processes, improving efficiency and resource optimization. When an

electronic document is signed, its original content remains unchanged; a data block

known as a digital signature is appended, which must meet these requirements:

1) The signature should be a unique bit pattern dependent on the document.

2) The signature should incorporate unique sender information to prevent

forgery or denial.

3) Creating the digital signature should be a relatively simple process.

4) Forging a digital signature must be computationally infeasible, whether by

generating a new message for an existing signature or creating a fake

signature for a given document.

5) The digital signature should be compact, requiring minimal storage space.

A strong hash function, encrypted with the sender's private key, fulfills these

requirements.

Considering this research, developing a RESTful Web API service for

implementing digital signature capabilities within a microservice architecture for

electronic document management systems is recommended. The proposed service

should be implemented using ASP.NET Core RESTful Web API technology,

enhancing the efficiency of electronic document management systems through a secure

digital signature subsystem.

Intellectual and technological potential of the XXI century‘ 2024 Part 1

 ISBN 978-3-98924-065-0 MONOGRAPH 95

Summary and conclusions

This research established that integrating digital signatures into electronic

document management systems significantly enhances the security and efficiency of

document management in organizations. Digital signatures ensure the authenticity,

integrity, and non-repudiation of documents, which are critical aspects for information

protection. The proposed approach to digital signature implementation, utilizing both

symmetric and asymmetric cryptographic methods, allows optimization of document

workflow and increases reliability.

Workflow Optimization – the proposed system structure, which employs a

RESTful Web API within a microservice architecture, allows for efficient integration

of digital signatures into existing document management systems, reducing

maintenance and modernization costs.

Confidentiality and Authenticity Protection – the use of asymmetric cryptography

secures documents against forgery and misuse, as the signature verification is

performed using a public key, enabling user authentication directly within the system.

Resistance to Attacks – the selected cryptographic methods protect the system

from critical attacks, including the adaptive chosen message attack, which is one of the

most serious threats to digital signature security.

Scalability Potential – due to the microservice architecture of the proposed

system, flexibility is increased, allowing easy adaptation to meet the specific needs of

organizations of various sizes and industries.

The proposed solutions create a reliable platform for storing and managing

digitally signed documents, which is especially important for the education sector and

other fields where document confidentiality and legitimacy are of particular

importance.

