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Introduction

The level of development of science and technology in the XXI century has
significantly expanded the possibilities for analyzing human behavior and cognitive
activity, with eye-tracking technologies becoming an essential research instrument.
The human eye movement system (EMS) provides highly informative parameters that
reflect neurological function, psychophysiological states, and cognitive load, making
it a valuable object of investigation across neuroscience, medicine, and artificial
intelligence.

A substantial body of research has confirmed the clinical relevance of eye-
tracking in diagnosing and monitoring neurological impairments. For instance, ocular
parameters have been systematically examined in Parkinson’s disease, supporting
retrospective clinical assessment [1], while anomaly detection techniques have been
applied to parametric and nonparametric analyses of EMS data [2]. Eye-tracking
biomarkers have also been proposed to improve the diagnostic accuracy of autism in
primary care [3], and the study of oculomotor features has contributed to the
development of intervention systems for dyslexia [4]. Beyond clinical diagnosis, eye
movement parameters are widely used to assess eye fatigue [5] and to measure
cognitive load during human-computer interaction tasks under time-critical conditions
[6]. Furthermore, predictive models based on eye-tracking have demonstrated potential
in estimating higher-level cognitive functions, such as reading comprehension [7] and
expert-novice differences during surgical training [8].

Recent advances in artificial intelligence have further enhanced the applicability

of EMS data for medical diagnostics. Deep learning approaches have been proposed
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for Alzheimer’s disease detection using eye-tracking data [9], while transfer learning
techniques have improved generalization in eye disease recognition systems [10]. At
the same time, nonlinear system identification provides a methodological framework
for modeling EMS dynamics. Integral models in the form of Volterra polynomials have
been applied for the identification of neurophysiological signals [11], and Volterra-
Laguerre models have been successfully employed to describe smooth pursuit eye
movements [12]. These methods are supported by established theoretical foundations
of Volterra-based system identification [13].

In addition to their biomedical relevance, eye-tracking technologies are
increasingly utilized in diverse applied domains. They have been adopted to evaluate
teamwork performance in healthcare [14], to enable secure biometric authentication
based on spatiotemporal gaze patterns [15], and to support nonlinear analyses of motor
imagery [16]. In education, eye-tracking has been used to study cognitive processes in
children during mental calculation [17] and to characterize learners’ attentional states
in multimedia learning environments [18]. Moreover, EMS data are applied in brain-
computer interface research, including EEG artifact reduction [19], in software
engineering tasks to identify source code defects [20], and in professional training for
vision-intensive domains such as aviation [21].

Therefore, eye-tracking research represents a rapidly evolving interdisciplinary
field, combining medical, cognitive, and engineering perspectives. In this study, we
focus on modeling EMS dynamics using nonlinear Volterra models, aiming to improve
the accuracy of system identification and to provide methodological support for
psychophysiological state assessment and applied developments across healthcare,

education, and artificial intelligence.
3.1 Problem Statement

The human EMS reflects essential cognitive and psychophysiological processes,
and its modeling provides valuable tools for assessing the functional state of the central
nervous system. Conventional approaches to eye movement analysis mainly rely on

empirical methods and simplified parametric models, which often fail to capture the
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nonlinear dynamic properties of the EMS. In contrast, integral nonlinear models, ;
particular first- and second-order Volterra representations in the form of transient
characteristics, have demonstrated significant potential for improving the diagnostic
evaluation of psychophysiological states [22].

The objective of the present study is to examine the diagnostic effectiveness
second-order Volterra models of the EMS, obtained from experimental "input-output"
eye-tracking data. Unlike previous studies, where test stimuli were applied exclusively
in the horizontal direction, the current work expands the experimental design by
including both horizontal and vertical trajectories of visual stimulation. This extension
enables a more comprehensive assessment of the EMS and allows for analyzing the
effect of stimulus direction on the accuracy of psychophysiological state classification.

The subject of investigation comprises computational methods and software tools
for extracting diagnostic features from EMS identification data, parameterized as first-
and second-order transient characteristics. Particular attention is given to the formation
of feature spaces and the construction of classifiers, including Bayesian and Support
Vector Machine approaches, with a focus on evaluating how the choice of stimulus
direction influences the classification performance.

This research represents a further step in the development of intelligent
information technologies for psychophysiological state assessment, advancing earlier
approaches by introducing multidirectional EMS identification and systematically

studying its impact on diagnostic reliability.
3.2 Theoretical Background

For the identification of the nonlinear dynamic system (NDS), mathematical
models in the form of Volterra integro-power polynomials are employed. The least
squares method (LSM) [23] is used for EMS identification. In this study, two models
are utilized for EMS identification: Modell and Model2. Modell is based on horizontal
test visual stimuli, whereas Model2 is constructed from orthogonal vertical test
experiments.

The time-domain identification method is applied for building Modell, which is
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based on approximating the response y(¢) of the NDS to a input deterministic signal

x(f) by an integro-power polynomial of order N (where N is the order of the

approximation model):

t

0 =29,0=2 .. fw,@-tt=t)[[xG)dr,
n=1 0 0 i=1

n=1
where 7,(f) denotes the partial components of the model response (with n being the
convolution dimension), and w,(¢ — 1i,...,  — T,) — 1s the Volterra kernel of order n.
The following statement holds [23].
Statement. Let the test signals a1x(¢), a»x(?), ..., apx(t) be sequentially applied to

the input of the NDS; L = N; a,, a,...,a;, — are distinct real numbers satisfying the

condition 0< g; <1, for Vj=1,2,...,L; and x(¢) is an deterministic signal. Then:

)N;N(ajx(t)) = Zj}n(ajx(t)) =

N n N
=Y al| . fw =t =t )[[x(x)dr, = Y a3, ).
0 i=1 n=l1

n times
n=l1 0

)

The partial components J, (¢) in the approximation model are determined using
the LSM. This makes it possible to obtain such estimates, for which the sum of squared
deviations of the responses of the identified NDS y(a; x(¢)) = y(¢ | a;) from the responses
of the model ¥ (@;x()) is minimized, i.e., it ensures the minimum of the mean square

error criterion. The minimization of the criterion reduces to solving the system of Gauss

normal equations, which can be written in vector-matrix form as:

A'Ag=Aly, G)
where
o, a} - a] y(tla) ] (5.(0)]
ac@ @] _ple| o)
la, a; -oar | [tla)] (@)

and A’ denotes the transposed matrix.
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From equation (3), we obtain
§=(A'A) Ay, @
If step test signals with amplitudes a, a,...,a;, are applied to the input of the
system to be identified, the estimates of the transient characteristics l;l(N) &)=y,
and diagonal cross-sections of the NDS transient characteristics hAéN "L =3,0), ...,
AV (t,....,1)= P, (¢) are obtained [23].

The responses of the investigated EMS models in the general case are computed

on the basis of the expression:
JN’]'(” aj):ajf’l(ﬂ"‘afﬁz@)"‘---"'a;vj/zv(t)a (5)
Model2, based on vertical orthogonal data, is constructed analogously to Modell.
The test signals bu(f), bou(?), ..., bru(t) are applied sequentially to the input of the
NDS, where by, b,,...,b, (L = N ) are distinct real numbers satisfying the condition 0<
b; <1, for Vj=1,2,...,L; and u(%) is an input deterministic signal.
The partial components Z,(Z) in the approximation model are determined using
the LSM, ensuring that the sum of squared deviations of the responses of the identified
NDS z(b; u(?)) = z(t | b;) from the responses of the model Z (b, u(#)) is minimized. The

minimization of the criterion reduces to solving the system of Gauss normal equations,

which can be written in vector-matrix form as:

B'Bz=B'z, (6)
where
b b e b [2(t1b)] [2()]
B b2 b22 sz = Z(t|b2), 5= éz(t) ’
b, bL2 bév_ _Z(f|bL)_ _éN(t)_

and B’ denotes the transposed matrix.

From equation (6), we obtain

2=(B'B)'B’z, (7)
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If step test signals with amplitudes b;, bs,...,b;, are applied to the input of the

system to be identified, the estimates of the transient characteristics &\ (¢) = 2, (¢)
and diagonal cross-sections of the NDS transient characteristics égN) (t,t)y=2,(0),...,

g W (¢,....,t) =2, (¢) are obtained in the same way as in Modell.

The responses of the EMS model, based on Model2, are computed using the

expression:

Z(t]b,)=b, 2, ()42 2,()+.. 4DV 2 (1), )

3.3 EMS Data Acquisition Procedure

The problem of accuracy evaluation of EMS models based on Volterra series was
previously investigated in [22], where three model orders and identification methods
were compared. In the present study, the analysis is focused on the quadratic Volterra
model identified by the LSM using step test signals of different amplitudes. The EMS
response to test step signals of the form x(#)=a;0(¢), j=1, 2, 3, where 0(¢) denotes the
Heaviside function, is analyzed with amplitudes a; (j=1, 2, 3): a1=(1/3)l;, a,=(2/3)L,,
as=l, (I, denotes the screen width of a computer monitor in pixels) was investigated in
the context of constructing Volterra models.

For vertical experiments, analogous EMS responses to test step signals are defined
as u(f)=bi0(¢¥) with amplitudes b, (k=1, 2, 3): bi=(1/3)l,, b,=(2/3)l,, bs=I, where
[, denotes the screen height in pixels.

For clarity, models derived from horizontal data are denoted as Modell, and those
from vertical data as Model2.

For EMS identification, empirical data were obtained in "input-output"
experiments using advanced eye-tracking technology. The Tobii Pro TX300 eye
tracker was employed to record ocular responses to orthogonal step visual stimuli,
presented separately along horizontal and vertical axes. Measurements were carried out
at different times of the day, including "Morning" (before work) and "Evening" (after
work), as well as on different days [24]. Each complete EMS research cycle for a single

participant included three experiments with test signals of increasing amplitude,
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performed sequentially along each axis.

During each EMS research cycle, the participant initially fixates on the starting
position (red point). After a short delay (1-2 sec), the red point disappears, and a test
stimulus (blue point) is presented (2-3 sec) at the first test amplitude along the
corresponding axis. The red fixation point then reappears, allowing the participant to
return gaze to the initial position. The same procedure is then repeated for the second
and third test amplitudes, each separated by a brief interstimulus interval.

The horizontal experiment sequence is illustrated in Fig. 1, which show the initial
fixation and successive presentations of the test stimulus at increasing horizontal
positions. The corresponding raw eye-tracking signals for horizontal displacements are

presented in Fig. 2 for the "Morning" and "Evening" conditions.

. .
a b

. .
c d

. °
e A

Figure 1 — Test stimulus: a), ¢), e) — initial position; b) — test stimulus position
(a1 = 1/3); d) — test stimulus position (a2 = 2/3); f) — test stimulus position
(a3=1)

A source: Created by the authors.

The vertical experiment follows an analogous procedure, with stimuli presented
from the top toward the bottom of the screen. The initial fixation and successive vertical
positions of the test stimulus are illustrated in Fig. 3, and the corresponding raw eye-

tracking signals are shown in Fig. 4 for the "Morning" and "Evening" conditions.
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Figure 2 — Raw eye tracker output signals recorded during horizontal

experiments for the respondent's state: a) '""Morning", b) '""Evening"

A source: Created by the authors.

The vertical experiment follows an analogous procedure, with stimuli presented
from the top toward the bottom of the screen. The initial fixation and successive vertical
positions of the test stimulus are illustrated in Fig. 3, and the corresponding raw eye-

tracking signals are shown in Fig. 4 for the "Morning" and "Evening" conditions.

.

™
a b
.

-
c d
.

.
e f

Figure 3 — Test stimulus: a), ¢), e) — initial position; b) — test stimulus position
(b1 = 1/3); d) — test stimulus position (b2 = 2/3); f) — test stimulus position
(bs=1)

A source: Created by the authors.
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Figure 4 — Raw eye tracker output signals recorded during vertical

experiments for the respondent's state: a) '""Morning', b) "Evening"

A source: Created by the authors.

3.4 EMS Modell and Model2

This section investigates the specifics of applying empirical data to construct EMS
models and evaluates the variability of averaged transient characteristics depending on
the psychophysiological state of the subject in the "Morning" and "Evening"
conditions. In accordance with the identification algorithm (3), all EMS response data
were aligned to a common initial point (synchronization was performed).

The empirical data obtained from horizontal experiments are designated as
Datasetl, while those from vertical experiments are designated as Dataset2. Datasetl
comprises eight observations corresponding to the "Morning" state and eight
observations corresponding to the "Evening" state, as illustrated in Fig. 5. Dataset2
comprises seven observations for the "Morning" state and eight observations for the
"Evening" state; to equalize the number of experiments, an additional eighth dataset
was generated synthetically. The vertical experimental data are presented in Fig. 6.

EMS models Modell and Model2 were constructed separately based on

horizontal and vertical experimental data. The transient characteristics derived from

the Datasetl are denoted as A™(r) and h{"(z,) while those obtained from the

Dataset2 are denoted as Ql(N) (¢) and QEN) (¢,1). The corresponding functions of the

first and second order are presented in Fig. 7 and Fig. 8, respectively, together with

their averaged values in the “Morning” and “Evening” states.
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Respondent’s Morning responses

0 5 10 15 20 25 30

Figure 5 — Datasetl — Empirical eye movement responses in the horizontal

direction for the states: a) "Morning"; b) '""Evening"

A source. Created by the authors.

Respondent’s Morning responses

0 5 10 15 20 25 30

Respondent’ s Evening responses

Figure 6 — Dataset2 — Empirical eye movement responses in the vertical

direction for the states: a) '"Morning'; b) ""Evening"

A source: Created by the authors.

Transient functions of N=2 model Morning

Transient functions of N=2 model Evening

Figure 7 — Transient characteristics of the first- and second-order of EMS

Modell obtained from Datasetl and their averaged values in the states:

a) '""Morning"; b) "Evening"

A source: Created by the authors.
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Transient functions of N=2 model Morning

05

0.0

=0.5

Figure 8 — Transient characteristics of the first- and second-order of EMS
Model2 obtained from Dataset2 and their averaged values in the states:
a) ""Morning"; b) "Evening"

A source: Created by the authors.

The variability (deviation) of the averaged transient characteristics of the EMS
models Modell for the respondent's "Morning" A"(z,) and "Evening" A'P(¢,)

conditions was evaluated using the following metrics:

o,ny — maximum deviation

M 7 (E
o = max |HY0,) 56, ©

€,y — normalized root mean square deviation (NRMSD)
Z (h(M) (f ) — h(E) (t ))
m=0
M
>y,

m=0

1/2

SnN -

; (10)

where n=1,2,...,N.
Using the transient characteristics of Model2, the metrics can be formally

represented in the same form as formulas (9) and (10) by considering the "Morning"

g%)( m) and "Evening" §,(,§,)(tm) conditions.

The variability metrics of the averaged transient characteristics for Modell and

Model2 are presented in Table 1.
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Table 1 — Variability indicators of the averaged transient characteristics for

The level of development of science and technology in the XXI century ‘ 2025

Modell and Model2

Model €IN GIN &N G2N
Modell 0.045 0.0706 0.2444 0.0796
Model2 0.1257 0.3209 0.7174 0.3226

A source: Calculated by the authors.

3.5. Dataset Formation

In this work, machine learning techniques are employed to evaluate the efficiency
of feature spaces derived from linear and quadratic transient characteristics for the
classification of psychophysiological states.

To facilitate further analysis, the following designations are used:

e E, — a feature space composed of heuristic parameters extracted from EMS
Modell;

e E, — a feature space composed of heuristic parameters extracted from EMS
Model2;

e W — a feature space obtained from approximation and detail coefficients
produced by wavelet decomposition of the Modell signal;

e W — a feature space obtained from approximation and detail coefficients

produced by wavelet decomposition of the Model2 signal;

3.5.1 Feature Space Ey and E,

The heuristic feature space E is constructed using transient characteristics of the
second-order Volterra model. The choice of these heuristic parameters is justified by
earlier research, where they demonstrated both informativeness and sensitivity to

variations in the subject’s psychophysiological condition. The list of EMS heuristic

features derived from the Modell represents a subset of the features ¢, €E,k=1,21

investigated in [25].
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Table 2 — Heuristic features determined from first- and second-order

transient characteristics of EMS Modell

'%ﬁu

Feature Formal definition Feature Formal definition
M . 2
ho (¢ argmin h, (¢, )
€] mZ:,)| 1( m)| €1l me[O’M]m
NI inh,(t ¢ )
h,(t .t min /1,
€ mz_:‘)| 2( m m) | €12 me[O,AZl], m
es max /4, (¢,)) e argminh, (¢,,¢,)
me[0,M ] me[0,M]
85 arg max hl (tm ) 616 max | hl (tm ) |
me[0,M ] me[0,M ]
€6 max h2 (tm > tm ) ée17 arg max | hl(tm) |
me[0,M ] mel[0,M ]
e7 arg max h; (tm’ tm) 618 max | h2 (tm > tm ) |
me[0,M ] me[0,M ]
el min hl (tm) €19 argmaX ’ hZ(tthm) |
me[0,M ] me[0,M ]

A source: [25].

where ﬁl (t,) and h2 (¢,,t,) represent the derivatives of the first- and second-order

transient characteristics, respectively.

The feature space E, is formed analogously to Eo, following the definitions

provided in Table 2, with the first- and second-order transient characteristics of

Model2, &,(¢t,) and &,(t,.t,), substituted for the corresponding Modell

characteristics. The list of EMS heuristic features derived from the Model2 represents

a subset of the features ¢, € E,,k=1,21.

3.5.2 Feature Space W and W

The W feature space is generated through wavelet decomposition [26] of the

transient characteristics of the first and second order. The decomposition is performed

using the discrete wavelet transform (DWT), where Coiflet 4 serves as the mother

wavelet with a decomposition level of 2. The feature vector is formed from the first

five approximation coefficients (ca) together with the first five detail coefficients (cd)

obtained at the second decomposition level. Each feature in the W space is denoted as
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w, € W,m=1,10, where w, = ca[l], ..., ws=ca[5], ws = cd[1],..., wio=cd[5]; m is the
feature index corresponding to the selected wavelet coefficients.

For Modell, the features of the feature space W are denoted as w,,, whereas for

Model2, the corresponding features of the feature space W are denoted as 1.
3.6 SVM Classifier

To assess the potential of the feature spaces in classifying psychophysiological
states, a support vector machine (SVM) classifier with a Gaussian (RBF) kernel was
implemented. The classifier was trained and evaluated in the Python environment using
the sklearn.svm.SVC class from the Scikit-learn library. Classification performance
metrics were calculated using functions from the sklearn.metrics module.

The efficiency of classification was evaluated based on the informativeness of
different feature combinations using the probability of correct recognition (PCR) [25]
criterion. An exhaustive search strategy was applied, which allowed for the consistent
examination of all possible feature pairs in order to identify diagnostically valuable

onces.

3.6.1 Dataset Based on Modell
Feature space Eo: For the EMS Modell, the maximum PCR reached 87.5% for
the feature pair based on a combination of linear and quadratic transient characteristics:
(em =min /,(z, )J &(612 = min , (tm,tm)]. (11)
me[0,M] me(0,M]
The corresponding confusion matrix illustrating the distribution of correctly and
incorrectly classified samples is presented in Fig. 9.
Feature space W: For the W feature space, the highest PCR of 87.5% was obtained

for the feature pairs wa&wg and we&ws.

3.6.2 Dataset Based on Model2
Feature space Eo: For the EMS Model2, the maximum PCR was 87.5% for the
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feature pairs based on a combination of linear and quadratic transient characteristics:

M
(’52:Z|§2(tm9tm)|j&[55:argmaxg,\.l(tm)Jﬁ (12)
m=0 me[0,M ]
(27 :argmaxé;(tm7tm)J&(Ell :argmlngi(tm)j (13)
me[0,M ] me[0,M ]

Feature space W: For the W feature space, the highest PCR of 93.75% was

obtained for the feature pair w;,&ws, and the corresponding confusion matrix is
presented in Fig. 10.

True label
True label

1 ]

FN FN

1 2 1 2
Predicted label

Predicted label
Figure 9 — Confusion Matrix for the  Figure 10 — Confusion Matrix for the

classifier based on feature pair ejo&er2 classifier based on feature pair w7&ws

A source: Calculated by the authors.

3.6.3 Dataset Based on Modell and Model2

Feature space E¢ and Eo: For the combined Datasetl and Dataset2, the EMS
models achieved a maximum PCR of 93.75% for the feature pair Based on a
combination of linear and quadratic transient characteristics:

(612 :minﬁé(tm’tm)j&[gl() :mingi(tm)j; (14)
me[0,M ]

me[0,M ]

The classification performance associated with this feature pair is illustrated in

the confusion matrix (Fig. 11) and the ROC curve (Fig. 12).

Additionally, several feature pairs with a PCR of 87.5% were identified,
including:
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Figure 11 — Confusion Matrix for the Figure 12 —- ROC Curve for the SVM

classifier based on feature pair e12&é10 classifier based on feature pair e2&¢€10

A source: Calculated by the authors.

— Based on linear transient characteristics:

(616 =maX|h1(fm)Ij&(5l6 =maX|£’1(l‘m)|j; (15)
me[0,M ] me[0,M ]
— Based on quadratic transient characteristics:
(612 = mln hA‘Z (tm’tm )j&(gu = mln g; (tmﬂtm )j 3 (16)
me[0,M] me[0,M ]
— Based on a combination of linear and quadratic transient characteristics:
M ~ '
(eZ :Z:|hz(z‘m,z‘m)|j&(e5 :argmaxgl(tm)j; (17)
=0 me[0,M]
(e =man ) |7 =man i) (18)
me[0,M ] me[0,M ]
[elo :minﬁ{(tm)j&(elz =minh}(tm,tm j (19)
me[0,M ] me[0,M ]

Feature space W and W: In the feature spaces W and W combining horizontal and

vertical data, a maximum PCR of 87.5% was observed for the feature pair wi&ws.

3.7 Cross-Validation of the SVM Classifier

To evaluate the generalization capability and robustness of the developed SVM
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classifiers, a 32-fold Stratified cross-validation procedure was applied. This approach
ensured a balanced representation of both psychophysiological states (“Morning” and
“Evening”) in each training and testing subset, preserving the proportional distribution
of samples across folds.

The initial dataset included eight experimental series for each state and for each
experimental orientation (Modell and Model2). To expand the sample and prevent
overfitting, additive Gaussian noise of 1%, 3%, and 5% was introduced into the data.
This augmentation significantly increased the dataset volume and allowed for a more

reliable estimation of the classifier’s performance under noisy conditions.

3.7.1 Dataset Based on Modell
Feature space Ey: the maximum PCR = 85.94% was obtained for the feature pair
(em = mink, (tm)) & (en = minh, (tm,tm)j.; (20)
mel0,M] me[0.M]
indicating moderate class separability between the “Morning” and “Evening” states.
The corresponding confusion matrix and ROC curve are shown in Fig. 13 and Fig. 14,
respectively.

Feature space W: the highest recognition accuracy was achieved for the feature

pair wa&wg, with PCR = 87.5%.

1.0+ -

<
@
A

=3
o
N\
AY

True label

True Positive Rate
o
a
\
\

o
]
AY

004 7 ROC curve

' v ' v ' v
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

1 2
Predicted label

Figure 13 — Confusion Matrix for the Figure 14 —- ROC Curve for the SVM

classifier based on feature pair eio&ei2 classifier based on feature pair ejo&er:

A source: Calculated by the authors.
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3.7.2 Dataset Based on Model2
Feature space Eo: the highest probability of correct recognition (PCR = 93.75%)

was achieved for the feature pair:

(513 = argminég(l‘m’tm)j & (EIS = max | §2(trn’tm) |] a (21)
me[0,M] me[0,M ]
Comparable performance values (PCR = 87.5%) were observed for the pairs:
M
[52 =Z|éz(fm,tm)lJ&(5n =afgmin§1(fm)j; (22)
m=0 me[0,M ]
[55 = argmax g, (¢, )] & [513 =argmin g, (1, j . (23)
mel0,M ] mel0,M]

Compared with Section 6.2 (PCR = 87.5%), the PCR increased by 6.25%. The
corresponding confusion matrix and ROC curve are presented in Fig. 15 and Fig. 16,
respectively.

Feature space W: the maximum PCR of 90.62% was obtained for the feature pair
w1 &ws. A slightly lower value of 89.06% was observed for the pair w;&wy. Compared

with Section 6.2 (PCR = 93.75%), the classification accuracy decreased.
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0.8 - ’
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0.4 47

True Positive Rate
\
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004 » ROC curve
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False Positive Rate
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Figure 15 — Confusion Matrix for the Figure 16 — ROC Curve for the SVM

classifier based on feature pair é1:&¢é1s classifier based on feature pair éi3&éis

A source: Calculated by the authors.

3.7.3 Dataset Based on Modell and Model2
Feature space Ey and E: the highest PCR approached 100% for the feature pair:
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(612 = min };2 (2,51, )j&(gm = min gl(tm )j ;

me[0,M ]

Additional feature pairs yielded PCR values:
PCR =98.44% :

(612 = mln hA; (tm’tm )j&(gﬂ = mlné; (tm’tm)

me[0,M ]

me[0,M ]

PCR =92.19%:

(84 = max h’\l‘ (tm)] & [54 = max gA-{ (tm)) ;

me[0,M ] me[0,M ]

(616 :max|jl\l(tm) |J&(EIS = max | é2(tm5tm)|

me[0,M ]

me[0,M ]

me[0,M ]

J

J

(25)

(26)

27)

Feature space W and W: the highest PCR of 90.62% was achieved for the feature

pairs wo&ws.

The corresponding confusion matrix and ROC curve are illustrated in Fig. 17 and

Fig. 18, confirming the stability of classification performance across the combined

feature spaces and consistency with non-validated trends.
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Figure 17 — Confusion Matrix for the

classifier based on feature pair e2&é12

A source: Calculated by the authors.
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Figure 18 — ROC Curve for the SVM
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classifier based on feature pair e2&é12

All maximum PCR values for SVM classification, both before and after applying

32-fold cross-validation, are summarized in Table 3.
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Table 3 — Summary of maximum PCR values for SVM classifiers with and

without 32-fold cross-validation

o ~ Eo and E() W and W
Dataset Eo and E, W and W (32-fold CV) (32-fold CV))
Modell 87.5% 87.5% 85.94% 87.5%
Model2 87.5% 93.75% 93.75% 90.62%
Modell & o o ~100%; o
Model? 93.75% 87.5% 08 449, 90.62%

A source: Calculated by the authors.

Summary and conclusions.

The present research examined the human eye movement system (EMS) through
nonlinear integral models expressed as quadratic Volterra polynomials in the form of
multidimensional transient characteristics. Experimental “input-output” data, collected
using advanced eye-tracking technology, enabled the identification of EMS models
with three step test signals of varying amplitudes.

The EMS models were constructed on the basis of experimental datasets obtained
for two orientations: horizontal (Modell) and vertical (Model2). Correspondingly, two
categories of diagnostic feature spaces were formed: heuristic (Eo — Modell and E, —
Model2) and wavelet-based (W — Modell and W — Model2). To evaluate the
psychophysiological state of a person, statistical machine learning approaches were
applied within these constructed feature spaces. Training datasets were prepared
separately for Eo and Eo, as well as for W and W, along with a combined dataset
integrating both experimental orientations. Comprehensive computer modeling of
feature combinations was carried out, which made it possible to identify diagnostically
informative feature pairs with maximum probability of correct recognition (PCR).

The novelty of this study is associated with the experimental design: classification
analysis was performed not only on horizontal EMS data but also extended to vertical
experiments and the integrated dataset. This extension made it possible to reveal how
the orientation of the experiment affects classification performance.

The obtained results show that the support vector machine (SVM) classifiers
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demonstrated stable recognition capability across all feature spaces. For the separag
experimental datasets, the maximum probability of correct recognition (PCR) reached
87.5% for Modell in both Eq and W spaces, and 93.75% for Model2 in the W space.
When the horizontal and vertical datasets were combined, the recognition accuracy
increased, achieving a maximum PCR of 93.75% in the heuristic feature space. This
confirms that combining experimental data obtained in different orientations enhances
the diagnostic informativeness of the features and improves class separability between
the “Morning” and “Evening” states.

The application of 32-fold cross-validation further verified the reliability and
generalization capability of the SVM classifiers. The datasets were augmented with
samples containing additive Gaussian noise (1%, 3%, and 5%), allowing an assessment
of model robustness under realistic variability. For the combined dataset, the highest
PCR of 98.44% was achieved in the feature space Ey and E, whereas in the space W
and W, the maximum PCR reached 90.62%. These results confirm that incorporating
cross-validation and noise-augmented data provides a more objective evaluation of
classifier performance and enhances the reliability of recognition outcomes.

In conclusion, this study demonstrates the influence of experimental orientation
on recognition outcomes and confirms the diagnostic significance of the constructed
feature spaces. The results create a solid basis for further refinement of machine
learning techniques for psychophysiological state evaluation, including the use of
integrated horizontal and vertical datasets to enhance classifier stability and

generalization ability.
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