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Introduction 

The level of development of science and technology in the XXI century has 

significantly expanded the possibilities for analyzing human behavior and cognitive 

activity, with eye-tracking technologies becoming an essential research instrument. 

The human eye movement system (EMS) provides highly informative parameters that 

reflect neurological function, psychophysiological states, and cognitive load, making 

it a valuable object of investigation across neuroscience, medicine, and artificial 

intelligence. 

A substantial body of research has confirmed the clinical relevance of eye-

tracking in diagnosing and monitoring neurological impairments. For instance, ocular 

parameters have been systematically examined in Parkinson’s disease, supporting 

retrospective clinical assessment [1], while anomaly detection techniques have been 

applied to parametric and nonparametric analyses of EMS data [2]. Eye-tracking 

biomarkers have also been proposed to improve the diagnostic accuracy of autism in 

primary care [3], and the study of oculomotor features has contributed to the 

development of intervention systems for dyslexia [4]. Beyond clinical diagnosis, eye 

movement parameters are widely used to assess eye fatigue [5] and to measure 

cognitive load during human-computer interaction tasks under time-critical conditions 

[6]. Furthermore, predictive models based on eye-tracking have demonstrated potential 

in estimating higher-level cognitive functions, such as reading comprehension [7] and 

expert-novice differences during surgical training [8]. 

Recent advances in artificial intelligence have further enhanced the applicability 

of EMS data for medical diagnostics. Deep learning approaches have been proposed 
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for Alzheimer’s disease detection using eye-tracking data [9], while transfer learning 

techniques have improved generalization in eye disease recognition systems [10]. At 

the same time, nonlinear system identification provides a methodological framework 

for modeling EMS dynamics. Integral models in the form of Volterra polynomials have 

been applied for the identification of neurophysiological signals [11], and Volterra-

Laguerre models have been successfully employed to describe smooth pursuit eye 

movements [12]. These methods are supported by established theoretical foundations 

of Volterra-based system identification [13]. 

In addition to their biomedical relevance, eye-tracking technologies are 

increasingly utilized in diverse applied domains. They have been adopted to evaluate 

teamwork performance in healthcare [14], to enable secure biometric authentication 

based on spatiotemporal gaze patterns [15], and to support nonlinear analyses of motor 

imagery [16]. In education, eye-tracking has been used to study cognitive processes in 

children during mental calculation [17] and to characterize learners’ attentional states 

in multimedia learning environments [18]. Moreover, EMS data are applied in brain-

computer interface research, including EEG artifact reduction [19], in software 

engineering tasks to identify source code defects [20], and in professional training for 

vision-intensive domains such as aviation [21]. 

Therefore, eye-tracking research represents a rapidly evolving interdisciplinary 

field, combining medical, cognitive, and engineering perspectives. In this study, we 

focus on modeling EMS dynamics using nonlinear Volterra models, aiming to improve 

the accuracy of system identification and to provide methodological support for 

psychophysiological state assessment and applied developments across healthcare, 

education, and artificial intelligence. 

 
3.1 Problem Statement 

 
The human EMS reflects essential cognitive and psychophysiological processes, 

and its modeling provides valuable tools for assessing the functional state of the central 

nervous system. Conventional approaches to eye movement analysis mainly rely on 

empirical methods and simplified parametric models, which often fail to capture the 
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nonlinear dynamic properties of the EMS. In contrast, integral nonlinear models, in 

particular first- and second-order Volterra representations in the form of transient 

characteristics, have demonstrated significant potential for improving the diagnostic 

evaluation of psychophysiological states [22]. 

The objective of the present study is to examine the diagnostic effectiveness 

second-order Volterra models of the EMS, obtained from experimental "input-output" 

eye-tracking data. Unlike previous studies, where test stimuli were applied exclusively 

in the horizontal direction, the current work expands the experimental design by 

including both horizontal and vertical trajectories of visual stimulation. This extension 

enables a more comprehensive assessment of the EMS and allows for analyzing the 

effect of stimulus direction on the accuracy of psychophysiological state classification. 

The subject of investigation comprises computational methods and software tools 

for extracting diagnostic features from EMS identification data, parameterized as first- 

and second-order transient characteristics. Particular attention is given to the formation 

of feature spaces and the construction of classifiers, including Bayesian and Support 

Vector Machine approaches, with a focus on evaluating how the choice of stimulus 

direction influences the classification performance. 

This research represents a further step in the development of intelligent 

information technologies for psychophysiological state assessment, advancing earlier 

approaches by introducing multidirectional EMS identification and systematically 

studying its impact on diagnostic reliability. 

 
3.2 Theoretical Background 

 
For the identification of the nonlinear dynamic system (NDS), mathematical 

models in the form of Volterra integro-power polynomials are employed. The least 

squares method (LSM) [23] is used for EMS identification. In this study, two models 

are utilized for EMS identification: Model1 and Model2. Model1 is based on horizontal 

test visual stimuli, whereas Model2 is constructed from orthogonal vertical test 

experiments. 

The time-domain identification method is applied for building Model1, which is 
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based on approximating the response y(t) of the NDS to a input deterministic signal 

x(t) by an integro-power polynomial of order N (where N is the order of the 

approximation model): 
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where ŷn(t) denotes the partial components of the model response (with n being the 

convolution dimension), and wn(t – τ1,…, t – τn) – is the Volterra kernel of order n.  

The following statement holds [23]. 

Statement. Let the test signals a1x(t), a2x(t), …, aLx(t) be sequentially applied to 

the input of the NDS; ;NL ≥ a1, a2,…,aL – are distinct real numbers satisfying the 

condition 0< aj ≤1, for ∀j=1,2,...,L; and x(t) is an deterministic signal. Then: 
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The partial components )(ˆ tyn  in the approximation model are determined using 

the LSM. This makes it possible to obtain such estimates, for which the sum of squared 

deviations of the responses of the identified NDS y(aj x(t)) = y(t | aj) from the responses 

of the model ))((~ txay jN  is minimized, i.e., it ensures the minimum of the mean square 

error criterion. The minimization of the criterion reduces to solving the system of Gauss 

normal equations, which can be written in vector-matrix form as: 

yAŷAA ′=′ ,                                                  (3) 

where 
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and A′  denotes the transposed matrix. 
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From equation (3), we obtain 

yAA)A(ŷ 1 ′′= −
,                                                (4) 

If step test signals with amplitudes a1, a2,…,aL , are applied to the input of the 

system to be identified, the estimates of the transient characteristics )(ˆ)(ˆ
1

)(
1 tyth N =  

and diagonal cross-sections of the NDS transient characteristics )(ˆ),(ˆ
2

)(
2 tytth N = , …, 

)(ˆ),...,(ˆ )( tytth N
N

N =  are obtained [23].  

The responses of the investigated EMS models in the general case are computed 

on the basis of the expression: 
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Model2, based on vertical orthogonal data, is constructed analogously to Model1. 

The test signals b1u(t), b2u(t), …, bLu(t) are applied sequentially to the input of the 

NDS, where b1, b2,…,bL ( NL ≥ ) are distinct real numbers satisfying the condition 0< 

bj ≤1, for ∀j=1,2,...,L; and u(t) is an input deterministic signal. 

The partial components )(ˆ tzn  in the approximation model are determined using 

the LSM, ensuring that the sum of squared deviations of the responses of the identified 

NDS z(bj u(t)) = z(t | bj) from the responses of the model ))((~ tubz jN  is minimized. The 

minimization of the criterion reduces to solving the system of Gauss normal equations, 

which can be written in vector-matrix form as: 
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and B′  denotes the transposed matrix. 

From equation (6), we obtain 

zBB)B(ẑ 1 ′′= − ,                                                 (7) 
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If step test signals with amplitudes b1, b2,…,bL , are applied to the input of the 

system to be identified, the estimates of the transient characteristics )(ˆ)(ˆ 1
)(

1 tztg N =  

and diagonal cross-sections of the NDS transient characteristics )(ˆ),(ˆ 2
)(

2 tzttg N = ,…, 

)(ˆ),...,(ˆ )( tzttg N
N

N =  are obtained in the same way as in Model1. 

The responses of the EMS model, based on Model2, are computed using the 

expression: 
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3.3 EMS Data Acquisition Procedure 

 
The problem of accuracy evaluation of EMS models based on Volterra series was 

previously investigated in [22], where three model orders and identification methods 

were compared. In the present study, the analysis is focused on the quadratic Volterra 

model identified by the LSM using step test signals of different amplitudes. The EMS 

response to test step signals of the form х(t)=ajθ(t), j=1, 2, 3, where θ(t) denotes the 

Heaviside function, is analyzed with amplitudes aj (j=1, 2, 3): a1=(1/3)lx, a2=(2/3)lx, 

a3=lx (lx denotes the screen width of a computer monitor in pixels) was investigated in 

the context of constructing Volterra models.  

For vertical experiments, analogous EMS responses to test step signals are defined 

as u(t)=bkθ(t) with amplitudes bk (k=1, 2, 3): b1=(1/3)ly, b2=(2/3)ly, b3=ly where 

ly denotes the screen height in pixels.  

For clarity, models derived from horizontal data are denoted as Model1, and those 

from vertical data as Model2. 

For EMS identification, empirical data were obtained in "input-output" 

experiments using advanced eye-tracking technology. The Tobii Pro TX300 eye 

tracker was employed to record ocular responses to orthogonal step visual stimuli, 

presented separately along horizontal and vertical axes. Measurements were carried out 

at different times of the day, including "Morning" (before work) and "Evening" (after 

work), as well as on different days [24]. Each complete EMS research cycle for a single 

participant included three experiments with test signals of increasing amplitude, 
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performed sequentially along each axis. 

During each EMS research cycle, the participant initially fixates on the starting 

position (red point). After a short delay (1-2 sec), the red point disappears, and a test 

stimulus (blue point) is presented (2-3 sec) at the first test amplitude along the 

corresponding axis. The red fixation point then reappears, allowing the participant to 

return gaze to the initial position. The same procedure is then repeated for the second 

and third test amplitudes, each separated by a brief interstimulus interval. 

The horizontal experiment sequence is illustrated in Fig. 1, which show the initial 

fixation and successive presentations of the test stimulus at increasing horizontal 

positions. The corresponding raw eye-tracking signals for horizontal displacements are 

presented in Fig. 2 for the "Morning" and "Evening" conditions. 

 

 
a 

 
b 

 

 

 
c 

 
d 

 

 

 
e 

 
f 

 

Figure 1 – Test stimulus: a), c), e) – initial position; b) – test stimulus position 

(a1 = 1/3); d) – test stimulus position (a2 = 2/3); f) – test stimulus position 

(a3 = 1) 
A source: Created by the authors. 

 

The vertical experiment follows an analogous procedure, with stimuli presented 

from the top toward the bottom of the screen. The initial fixation and successive vertical 

positions of the test stimulus are illustrated in Fig. 3, and the corresponding raw eye-

tracking signals are shown in Fig. 4 for the "Morning" and "Evening" conditions. 
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a 

 
b 

Figure 2 – Raw eye tracker output signals recorded during horizontal 

experiments for the respondent's state: a) "Morning", b) "Evening" 
A source: Created by the authors. 

 

The vertical experiment follows an analogous procedure, with stimuli presented 

from the top toward the bottom of the screen. The initial fixation and successive vertical 

positions of the test stimulus are illustrated in Fig. 3, and the corresponding raw eye-

tracking signals are shown in Fig. 4 for the "Morning" and "Evening" conditions. 

 

 
a 

 
b 

 

 

 
c 

 
d 

 

 

 
e 

 
f 

 

Figure 3 – Test stimulus: a), c), e) – initial position; b) – test stimulus position 

(b1 = 1/3); d) – test stimulus position (b2 = 2/3); f) – test stimulus position 

(b3 = 1) 
A source: Created by the authors. 
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a 

 
b 

Figure 4 – Raw eye tracker output signals recorded during vertical 

experiments for the respondent's state: a) "Morning", b) "Evening" 
A source: Created by the authors. 

 
3.4 EMS Model1 and Model2 

 
This section investigates the specifics of applying empirical data to construct EMS 

models and evaluates the variability of averaged transient characteristics depending on 

the psychophysiological state of the subject in the "Morning" and "Evening" 

conditions. In accordance with the identification algorithm (3), all EMS response data 

were aligned to a common initial point (synchronization was performed). 

The empirical data obtained from horizontal experiments are designated as 

Dataset1, while those from vertical experiments are designated as Dataset2. Dataset1 

comprises eight observations corresponding to the "Morning" state and eight 

observations corresponding to the "Evening" state, as illustrated in Fig. 5. Dataset2 

comprises seven observations for the "Morning" state and eight observations for the 

"Evening" state; to equalize the number of experiments, an additional eighth dataset 

was generated synthetically. The vertical experimental data are presented in Fig. 6. 

EMS models Model1 and Model2 were constructed separately based on 

horizontal and vertical experimental data. The transient characteristics derived from 

the Dataset1 are denoted as )(ˆ )(
1 th N  and ),(ˆ )(

2 tth N  while those obtained from the 

Dataset2 are denoted as )(ˆ )(
1 tg N  and ),(ˆ )(

2 ttg N . The corresponding functions of the 

first and second order are presented in Fig. 7 and Fig. 8, respectively, together with 

their averaged values in the “Morning” and “Evening” states. 
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a 

 
b 

Figure 5 – Dataset1 – Empirical eye movement responses in the horizontal 

direction for the states: a) "Morning"; b) "Evening" 
A source: Created by the authors. 

 
a 

 
b 

Figure 6 – Dataset2 – Empirical eye movement responses in the vertical 

direction for the states: a) "Morning"; b) "Evening" 
A source: Created by the authors. 

 

 
a 

 
b 

Figure 7 – Transient characteristics of the first- and second-order of EMS 

Model1 obtained from Dataset1 and their averaged values in the states: 

a) "Morning"; b) "Evening" 
A source: Created by the authors. 
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a 

 
b 

Figure 8 – Transient characteristics of the first- and second-order of EMS 

Model2 obtained from Dataset2 and their averaged values in the states: 

a) "Morning"; b) "Evening" 
A source: Created by the authors. 

 

The variability (deviation) of the averaged transient characteristics of the EMS 

models Model1 for the respondent`s "Morning" ( )mnN th )M(ˆ  and "Evening" ( )mnN th )E(ˆ  

conditions was evaluated using the following metrics:  

σnN – maximum deviation 

|;)(ˆ)(ˆ|maxσ )E()M(

],0[ mnNmnNMmnN thth −=
∈

                                      (9) 

εnN – normalized root mean square deviation (NRMSD) 
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where n = 1,2,…,N.  

Using the transient characteristics of Model2, the metrics can be formally 

represented in the same form as formulas (9) and (10) by considering the "Morning" 

( )mnN tg )M(ˆ  and "Evening" ( )mnN tg )E(ˆ  conditions. 

The variability metrics of the averaged transient characteristics for Model1 and 

Model2 are presented in Table 1. 
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Table 1 – Variability indicators of the averaged transient characteristics for 

Model1 and Model2 

Model ε1N σ1N ε2N σ2N 
Model1 0.045 0.0706 0.2444 0.0796 
Model2 0.1257 0.3209 0.7174 0.3226 

A source: Calculated by the authors. 

 

3.5. Dataset Formation 

 

In this work, machine learning techniques are employed to evaluate the efficiency 

of feature spaces derived from linear and quadratic transient characteristics for the 

classification of psychophysiological states. 

To facilitate further analysis, the following designations are used: 

• E0 – a feature space composed of heuristic parameters extracted from EMS 

Model1; 

• Ẽ0 – a feature space composed of heuristic parameters extracted from EMS 

Model2; 

• W – a feature space obtained from approximation and detail coefficients 

produced by wavelet decomposition of the Model1 signal; 

• W̃ – a feature space obtained from approximation and detail coefficients 

produced by wavelet decomposition of the Model2 signal; 

 

3.5.1 Feature Space E0 and Ẽ0 

The heuristic feature space E0 is constructed using transient characteristics of the 

second-order Volterra model. The choice of these heuristic parameters is justified by 

earlier research, where they demonstrated both informativeness and sensitivity to 

variations in the subject’s psychophysiological condition. The list of EMS heuristic 

features derived from the Model1 represents a subset of the features 211,=,E 0 kek ∈  

investigated in [25]. 
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Table 2 – Heuristic features determined from first- and second-order 

transient characteristics of EMS Model1 

Feature Formal definition Feature Formal definition 
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A source: [25]. 

 

where )(ˆ '
1 mth  and ),(ˆ '

2 mm tth  represent the derivatives of the first- and second-order 

transient characteristics, respectively. 

The feature space Ẽ0 is formed analogously to E0, following the definitions 

provided in Table 2, with the first- and second-order transient characteristics of 

Model2, )(ˆ1 mtg  and ),(ˆ 2 mm ttg , substituted for the corresponding Model1 

characteristics. The list of EMS heuristic features derived from the Model2 represents 

a subset of the features 211,=,E~~
0 kek ∈ . 

 

3.5.2 Feature Space W and W̃ 

The W feature space is generated through wavelet decomposition [26] of the 

transient characteristics of the first and second order. The decomposition is performed 

using the discrete wavelet transform (DWT), where Coiflet 4 serves as the mother 

wavelet with a decomposition level of 2. The feature vector is formed from the first 

five approximation coefficients (ca) together with the first five detail coefficients (cd) 

obtained at the second decomposition level. Each feature in the W space is denoted as 
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101,=,W mwm ∈ , where w1 = ca[1], …, w5=ca[5], w6 = cd[1],…, w10=cd[5]; m is the 

feature index corresponding to the selected wavelet coefficients. 

For Model1, the features of the feature space W are denoted as wm, whereas for 

Model2, the corresponding features of the feature space W̃ are denoted as w̃m. 

 

3.6 SVM Classifier 

 

To assess the potential of the feature spaces in classifying psychophysiological 

states, a support vector machine (SVM) classifier with a Gaussian (RBF) kernel was 

implemented. The classifier was trained and evaluated in the Python environment using 

the sklearn.svm.SVC class from the Scikit-learn library. Classification performance 

metrics were calculated using functions from the sklearn.metrics module.  

The efficiency of classification was evaluated based on the informativeness of 

different feature combinations using the probability of correct recognition (PCR) [25] 

criterion. An exhaustive search strategy was applied, which allowed for the consistent 

examination of all possible feature pairs in order to identify diagnostically valuable 

ones. 

 

3.6.1 Dataset Based on Model1 

Feature space E0: For the EMS Model1, the maximum PCR reached 87.5% for 

the feature pair based on a combination of linear and quadratic transient characteristics:  
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The corresponding confusion matrix illustrating the distribution of correctly and 

incorrectly classified samples is presented in Fig. 9. 

Feature space W: For the W feature space, the highest PCR of 87.5% was obtained 

for the feature pairs w4&w8 and w6&w8. 

 

3.6.2 Dataset Based on Model2 

Feature space Ẽ0: For the EMS Model2, the maximum PCR was 87.5% for the 
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feature pairs based on a combination of linear and quadratic transient characteristics: 
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Feature space W̃: For the W̃ feature space, the highest PCR of 93.75% was 

obtained for the feature pair w̃7&w̃8, and the corresponding confusion matrix is 

presented in Fig. 10. 

  
Figure 9 – Confusion Matrix for the 

classifier based on feature pair e10&e12 

Figure 10 – Confusion Matrix for the 

classifier based on feature pair w̃7&w̃8 
A source: Calculated by the authors. 

 

3.6.3 Dataset Based on Model1 and Model2 

Feature space E0 and Ẽ0: For the combined Dataset1 and Dataset2, the EMS 

models achieved a maximum PCR of 93.75% for the feature pair Based on a 

combination of linear and quadratic transient characteristics: 
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The classification performance associated with this feature pair is illustrated in 

the confusion matrix (Fig. 11) and the ROC curve (Fig. 12). 

Additionally, several feature pairs with a PCR of 87.5% were identified, 

including: 
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Figure 11 – Confusion Matrix for the 

classifier based on feature pair e12&ẽ10 

Figure 12 – ROC Curve for the SVM 

classifier based on feature pair e12&ẽ10 
A source: Calculated by the authors. 

 

– Based on linear transient characteristics: 
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– Based on quadratic transient characteristics: 
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– Based on a combination of linear and quadratic transient characteristics: 
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Feature space W and W̃: In the feature spaces W and W̃ combining horizontal and 

vertical data, a maximum PCR of 87.5% was observed for the feature pair w1&w̃3. 

 

3.7 Cross-Validation of the SVM Classifier 

 

To evaluate the generalization capability and robustness of the developed SVM 
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classifiers, a 32-fold Stratified cross-validation procedure was applied. This approach 

ensured a balanced representation of both psychophysiological states (“Morning” and 

“Evening”) in each training and testing subset, preserving the proportional distribution 

of samples across folds. 

The initial dataset included eight experimental series for each state and for each 

experimental orientation (Model1 and Model2). To expand the sample and prevent 

overfitting, additive Gaussian noise of 1%, 3%, and 5% was introduced into the data. 

This augmentation significantly increased the dataset volume and allowed for a more 

reliable estimation of the classifier’s performance under noisy conditions. 

 

3.7.1 Dataset Based on Model1 

Feature space E0: the maximum PCR = 85.94% was obtained for the feature pair 
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indicating moderate class separability between the “Morning” and “Evening” states. 

The corresponding confusion matrix and ROC curve are shown in Fig. 13 and Fig. 14, 

respectively. 

Feature space W: the highest recognition accuracy was achieved for the feature 

pair w4&w8, with PCR = 87.5%. 

 

  
Figure 13 – Confusion Matrix for the 

classifier based on feature pair e10&e12 

Figure 14 – ROC Curve for the SVM 

classifier based on feature pair e10&e12 
A source: Calculated by the authors. 
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3.7.2 Dataset Based on Model2 

Feature space Ẽ0: the highest probability of correct recognition (PCR = 93.75%) 

was achieved for the feature pair: 
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Comparable performance values (PCR = 87.5%) were observed for the pairs: 
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Compared with Section 6.2 (PCR = 87.5%), the PCR increased by 6.25%. The 

corresponding confusion matrix and ROC curve are presented in Fig. 15 and Fig. 16, 

respectively. 

Feature space W̃: the maximum PCR of 90.62% was obtained for the feature pair 

w̃1&w̃3. A slightly lower value of 89.06% was observed for the pair w̃7&w̃9. Compared 

with Section 6.2 (PCR = 93.75%), the classification accuracy decreased. 

  
Figure 15 – Confusion Matrix for the 

classifier based on feature pair ẽ13&ẽ18 

Figure 16 – ROC Curve for the SVM 

classifier based on feature pair ẽ13&ẽ18 
A source: Calculated by the authors. 

 

3.7.3 Dataset Based on Model1 and Model2 

Feature space E0 and Ẽ0: the highest PCR approached 100% for the feature pair: 
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Additional feature pairs yielded PCR values: 

PCR = 98.44% : 
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PCR = 92.19% : 
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Feature space W and W̃: the highest PCR of 90.62% was achieved for the feature 

pairs w2&w̃5.  

The corresponding confusion matrix and ROC curve are illustrated in Fig. 17 and 

Fig. 18, confirming the stability of classification performance across the combined 

feature spaces and consistency with non-validated trends. 

  
Figure 17 – Confusion Matrix for the 

classifier based on feature pair e12&ẽ12 

Figure 18 – ROC Curve for the SVM 

classifier based on feature pair e12&ẽ12 
A source: Calculated by the authors. 

 

All maximum PCR values for SVM classification, both before and after applying 

32-fold cross-validation, are summarized in Table 3. 
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Table 3 – Summary of maximum PCR values for SVM classifiers with and 

without 32-fold cross-validation 

Dataset E0 and Ẽ0 W and W̃ E0 and Ẽ0 
(32-fold CV) 

W and W̃ 
(32-fold CV) 

Model1 87.5% 87.5% 85.94% 87.5% 
Model2 87.5% 93.75% 93.75% 90.62% 

Model1 & 
Model2 93.75% 87.5% ~100%; 

98.44% 90.62% 
A source: Calculated by the authors. 

 

Summary and conclusions. 

 

The present research examined the human eye movement system (EMS) through 

nonlinear integral models expressed as quadratic Volterra polynomials in the form of 

multidimensional transient characteristics. Experimental “input-output” data, collected 

using advanced eye-tracking technology, enabled the identification of EMS models 

with three step test signals of varying amplitudes. 

The EMS models were constructed on the basis of experimental datasets obtained 

for two orientations: horizontal (Model1) and vertical (Model2). Correspondingly, two 

categories of diagnostic feature spaces were formed: heuristic (E0 – Model1 and Ẽ0 – 

Model2) and wavelet-based (W – Model1 and W̃ – Model2). To evaluate the 

psychophysiological state of a person, statistical machine learning approaches were 

applied within these constructed feature spaces. Training datasets were prepared 

separately for E0 and Ẽ0, as well as for W and W̃, along with a combined dataset 

integrating both experimental orientations. Comprehensive computer modeling of 

feature combinations was carried out, which made it possible to identify diagnostically 

informative feature pairs with maximum probability of correct recognition (PCR). 

The novelty of this study is associated with the experimental design: classification 

analysis was performed not only on horizontal EMS data but also extended to vertical 

experiments and the integrated dataset. This extension made it possible to reveal how 

the orientation of the experiment affects classification performance. 

The obtained results show that the support vector machine (SVM) classifiers 
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demonstrated stable recognition capability across all feature spaces. For the separate 

experimental datasets, the maximum probability of correct recognition (PCR) reached 

87.5% for Model1 in both E0 and W spaces, and 93.75% for Model2 in the W̃ space. 

When the horizontal and vertical datasets were combined, the recognition accuracy 

increased, achieving a maximum PCR of 93.75% in the heuristic feature space. This 

confirms that combining experimental data obtained in different orientations enhances 

the diagnostic informativeness of the features and improves class separability between 

the “Morning” and “Evening” states. 

The application of 32-fold cross-validation further verified the reliability and 

generalization capability of the SVM classifiers. The datasets were augmented with 

samples containing additive Gaussian noise (1%, 3%, and 5%), allowing an assessment 

of model robustness under realistic variability. For the combined dataset, the highest 

PCR of 98.44% was achieved in the feature space E0 and Ẽ0, whereas in the space W 

and W̃, the maximum PCR reached 90.62%. These results confirm that incorporating 

cross-validation and noise-augmented data provides a more objective evaluation of 

classifier performance and enhances the reliability of recognition outcomes. 

In conclusion, this study demonstrates the influence of experimental orientation 

on recognition outcomes and confirms the diagnostic significance of the constructed 

feature spaces. The results create a solid basis for further refinement of machine 

learning techniques for psychophysiological state evaluation, including the use of 

integrated horizontal and vertical datasets to enhance classifier stability and 

generalization ability. 

 
 
 
 
 
 
 
 
 


