GENERAL SOLUTIONS OF SYSTEMS OF INHOMOGENEOUS EQUATIONS OF HIGH ORDERS OF THE VARIANT OF MATHEMATICAL THEORY OF NON-THIN PLATES

Authors

DOI:

https://doi.org/10.30890/2709-2313.2022-09-01-014

Keywords:

general solutions, systems of inhomogeneous equations, high orders, variant of mathematical theory, non-thin plates

Abstract

general solutions of systems of inhomogeneous equations of high orders of the variant of mathematical theory of non-thin plates

Metrics

Metrics Loading ...

References

Altenbach H., Eremeyev V.A. (2009). On the linear theory of micropolar plates, Journal of applied mathematics and mechanics, vol. 89, issue 4, pp. 242–256.

Ambarcumyan S. A. (1987). Teorija anizotropnіh plastin [Theory of Anisotropic Plates], Moskva: Nauka.

Cicala R. (1959). Sulla teria elastica della plate sottile, Giorn genio Civile, vol. 97, issue 4, pp. 238–256.

Ebrahimi F., Nasirzadeh P. (2015). A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method, Journal of Theoretical and Applied Mechanics, vol. 53, issue 4, pp. 1041–1052.

Ghasemabadian M. A.,Saidi A. R. (2017). Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution, Structural Engineering and Mechanics, vol. 62, issue 6. pp. 675–693.

Grigorenko Ya. M., Vasilenko A. T., Pankratova N. D. (1991). Zadachi teorii uprugosti neodnorodnyh tel [Problems of the theory of elasticity of inhomogeneous bodies], Kiev: Naukova dumka.

Gulyaev V. I., Bazhenov V. A., Lizunov P. P. (1978). Neklassicheskaja teorija obolochek i ee primenenie dlja reshenija inzhenernyh zadach [Non-classical theory of shells and its application to solving engineering problems], Lvov: Izdatelstvo Lvovskogo universiteta.

Homa I. Yu. (1973). Ob obshhem reshenii sistemy uravnenij ravnovesija izgiba plastin postojannoj tolshhiny [On the general solution of the system of equations of equilibrium for bending plates of constant thickness], Doklady AN SSSR [Reports of the USSR Academy of Sciences], issue 1, pp. 59–62.

Kazemi M. (2018). Hygrothermoelastic buckling response of composite laminates by using mod fied shear deformation theory, Journal of Theoretical and Applied Mechanics, vol. 56, issue 1, pp. 3–14.

Kilchevskij N. A. (1963). Osnovy analiticheskoj mehaniki obolochek [Fundamentals of Analytical Shell Mechanics], Izdatelstvo AN USSR, Kiev.

Kushnir R. M., Marchuk M.V., Osadchuk V. A. (2006). Nelinejnye zadachi statiki i dinamiki, podverzhennye poperechnoj deformacii sdviga i szhatija plastin i obolochek [Nonlinear problems of statics and dynamics susceptible to transverse shear deformation and compression of plates and shells], Aktualnye problemy mehaniki deformiruemogo tverdogo tela [Actual problems of the mechanics of a deformable solid], Doneck, pp. 238–240.

Mushtari H. M. (1959). Teorija izgiba plit srednej tolshhinі [Theory of bending plates of medium thickness], Izvestiya AN SSSR, Otdel tehnicheskih nauk, Mehanika i mashinostroenie [Mechanics and mechanical engineering], vol. 2, pp. 107-113.

Nemish Yu.N., Homa I.Yu. (1991). Naprjazhenno-deformirovannoe sostojanie netonkih obolochek i plastin. Obobshhennaja teorija [Stress-strain state of non-thin shells and plates. Generalized theory], Prikladna mehanika [Applied mechanics], vol. 29, issue 11, pp. 3–27.

Nemish Yu. N. (2000). Razvitie analiticheskih metodov v trehmernyh zadachah statiki anizotropnyh tel [The development of analytical methods in three-dimensional problems of the statics of anisotropic bodies], Prikladna mehanika [Applied mechanics], vol. 36, issue 2, pp. 3–38.

Novackij V. (1970). Dinamicheskie zadachi termouprugosti [Dynamic Problems of Thermoelasticity], M.: Mir.

Plehanov A. V., Prusakov A. P. (1976). Ob asimptoticheskom metode postroenija teorii izgiba plastin srednej tolshhiny [On an asymptotic method for constructing a theory of bending of plates of medium thickness], Mehanika tverdogo tela [Journal of Solid State Mechanics], vol, 3, pp. 84–90.

Ponyatovskij V. V. (1962). K teorii plastin srednej tolshhiny [To the theory of medium-thickness plates], Prikladnaya matematika i mehanika [Applied Mathematics and Mechanics], vol. 24, issue 2, pp. 335–341.

Pozhuyev V. I. (1980). Reakciya cilindricheskoj obolochki, nahodyashejsya v transversalno-izotropnoj srede, na dejstvie podvizhnoj nagruzki [Reaction of a cylindrical shell located in a transversally isotropic medium to the action of a moving load], Prikladnaya mehanika [Applied mechanics], vol. 16, issue 11, pp. 28–35.

Prusakov A. P. (1975). O postroenii teorii izgiba plastin srednej tolshchiny energoasimptoticheskim metodom [On the construction of the theory of bending of plates of medium thickness by the energy-asymptotic method], Prikladnaya mehanika [Applied mechanics], vol. 11, issue 10, pp. 44–51.

Prusakov A. P. (1993). O postroenii uravnenij izgiba dvenadcatogo porjadka dlja poperechno-izotropnoj plastiny [On the construction of twelfth-order bending equations for a transversely isotropic plate], Prikladnaya mehanika [Applied mechanics], vol. 29, issue 12, pp. 51–58.

Reissner E. (1944). On the theory of bending of elastic plates, Journal of Mathematics and Physics, vol. 33, pp. 184–191.

Reissner E. (1950). On a variotional theoremin elasticiti, Journal of Mathematics and Physics, vol. 33, pp. 90–95.

Sheremetev M. P., Peleh B. L. (1964). K postroeniyu utochnennoj teorii plastin [On the construction of a refined theory of plates], Inzhenernyj Zhurnal [Engineering Journal], vol. 4, issue 3, pp. 504–509.

Shevlyakov Yu. A., Shevchenko V. P. (1964). Rozv’yazok zadach zginu pologih sferichnih obolonok [Solving the problems of bending flat shallow shells], Prikladna mehanika [Applied mechanics], vol. 10, issue 4, pp. 382–391.

Storozhuk E. A., Chernyshenko I. S., Yacura A. V. (2018). Napryazhenno-deformirovannoe sostoyanie vozle otverstiya v podatlivoj na sdvig kompozitnoj cilindricheskoj obolochke ellipticheskogo secheniya [Stress-strain state near a hole in a shear-compliant composite cylindrical shell with an elliptical cross section], Prikladna mehanika [Applied mechanics], vol. 54, issue 5, pp. 78–86.

Timoshenko S. P. (1921). On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine and Journal of sciene, vol. 41, issue 6, 245, pp. 744–746.

Vekua I. N. (1955). Ob odnom metode rascheta prizmaticheskih obolochek [About one method for calculating prismatic shells], Trudy Tbilisskogo matematicheskogo instituta [Proceedings of the Tbilisi Mathematical Institute], vol. 21, pp. 191–293.

Velichko P. M., Shevlyakov Yu. A., Shevchenko V. P. (1969). Napryazhenno-deformirovannoe sostoyanie plastin i obolochek pri sosredotochennyh nagruzkah [Stress-strain state of plates and shells under concentrated loads], Trudy 7-j Vsesoyuznoj konferencii po teorii plastin i obolochek, Dnepropetrovsk [Proceedings of the 7th All-Union Conference on the Theory of Plates and Shells, Dnepropetrovsk], Moscow: Nauka, pp. 142–145.

Zelensky A. G., Serebrianska P. A. (2008). Do rozrakhunku plastyn na zghyn z urakhuvanniam nablyzhen vyshchykh poriadkiv [To the calculation of plates for bending taking into account higher-order approximations]. Visnyk Dnipropetrovskoho universytetu [Bulletin of Dnipropetrovsk University], vol. 16, №. 5, Mekhanika [Mechanics], issue 11, vol. 1, pp. 127–136.

Zelenskij A. G. (2009). Modeli analitychnoi teorii transversalno-izotropnykh plastyn [Models of analytical theory of transversal-isotropic plates], Visnik Dnipropetrovskogo universitetu [Bulletin of Dnipropetrovsk University], vol. 17, №. 5, Mehanika [Mechanics], issue 13, vol. 2, pp. 54–62.

Zelensky A. G. (2019). Mathematical Theory of Transversally Isotropic Shells of Arbitrary Thickness at Static Load. Materials Science Forum. Actual problems of engineering mechanics. Switzerland: Trans Tech Publications Ltd, vol. 968, pp. 496–510. ISSN: 1662–9752, doi: 10.4028/www.scientific.net/MSF.968.496.

Zelensky A. G. (2019). The Method of Successive Approximations in the Mathematical the-orv of Shallow Shells of Arbitrary Thickness. World Science, Multidisciplinary Scientific Edition, Physics and Mathematics. RS Global Sp. z O.O.: Warsaw, vol. 1, №11(51), pp. 31–39.

Zelensky A. G. (2019). Analytical and Practical Development of Variant of Mathematical Theory of Shells of Small Curvature of Arbitrary Thickness. New Stages of Development of Modern Scince in Ukraine and eu Countries. Chapter “Physical and Mathematical Sciences”. Monograph. Riga, Latvia: “Baltija Publishing”, pp. 308–328.

Zelensky A. G. (2020). Development of aVariant of Mathematical Theory of Thick Transversal-isotropic Plates, International periodic scientific journal. Modern engineering and innovative technologies. Karlsruhe. Issue № 11, Part 1, pp. 27–41.

Zelensky A. G. (2022). Methodology of solving differential equilibrium Equations of mathematical plate theory. Proceedings of the Scientific Collection "InterConf", (99) of the 4th International Scientific and Practical Conference "International Scientific Discussion: Problems, Tasks and Prospects" (February 19-20, 2022) in Brighton, UK, pp.741–752.

Published

2022-02-28

How to Cite

Zelensky, A. (2022). GENERAL SOLUTIONS OF SYSTEMS OF INHOMOGENEOUS EQUATIONS OF HIGH ORDERS OF THE VARIANT OF MATHEMATICAL THEORY OF NON-THIN PLATES. European Science, 1(sge09-01), 78–94. https://doi.org/10.30890/2709-2313.2022-09-01-014