THE POTENTIAL OF N-HYDROXYPHTHALIMIDE FOR THE LARGE-SCALE CH-OXIDATIONS

Authors

DOI:

https://doi.org/10.30890/2709-2313.2023-16-03-014

Keywords:

aerobic oxidations, CH-functionalizations, metal-free, N-hydroxyphthalimide, phthalimido-N-oxyl radical

Abstract

Current trends toward "green" chemistry involve the use inexpensive reagents under the mildest possible conditions to give target products nearly quantitatively. N-Hydroxyphthalimide (NHPI), a source of highly electrophilic phthalimido-N-oxyl radical (PIN

Metrics

Metrics Loading ...

References

Modern Oxidation Methods. Second ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; p 481.

Mallat, T.; Baiker, A., Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chem. Rev. 2004, 104 (6), 3037-3058.

Hudlicky, M., Oxidations in organic chemistry. American Chemical Society: Washington, 1990; p 456.

Ley, S. V.; Madin, A., Oxidation. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds. Pergamon Press, Oxford: 1991; Vol. 7, p 251.

Schwertfeger, H.; Fokin, A. A.; Schreiner, P. R., Diamonds are a Chemist's Best Friend: Diamondoid Chemistry Beyond Adamantane. Angew. Chem. 2008, 47, 1022-1036.

Fokina, N. A.; Tkachenko, B. A.; Merz, A.; Serafin, M.; Dahl, J. E. P.; Carlson, R. M. K.; Fokin, A. A.; Schreiner, P. R., Hydroxy Derivatives of Diamantane, Triamantane, and [121]Tetramantane: Selective Preparation of Bis-Apical Derivatives. Eur. J. Org. Chem. 2007, 2007 (28), 4738-4745.

Gund, T. M.; Nomura, M.; V.Z., W.; Schleyer, P. v. R.; Hoogzand, C., The functionalization of diamantane (congressane). Tetrahedron Lett. 1970, 11 (56), 4875-4878.

Kafka, Z.; Vodička, L.; Hájek, M., Oxidation of triamantane by sulphuric acid. Collect. Czechoslov. Chem. Commun. 1983, 48 (4), 1074-1076.

Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H., Platinum Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative. Science 1998, 280 (5363), 560-564.

Mironov, O. A.; Bischof, S. M.; Konnik, M. M.; Hashiguchi, B. G.; Ziatdinov, V. R.; Goddard 3rd, W. A.; Ahlquist, M.; Periana, R. A., Using reduced catalysts for oxidation reactions: mechanistic studies of the "Periana-Catalytica" system for CH4 oxidation. J. Am. Chem. Soc. 2013, 135 (39), 14644-14658.

Kim, S.-B.; Lee, K.-W.; Kim, Y.-J.; Hong, S.-I., The Effect of Iron Catalysts on the Formation of Alcohol and Ketone in the Biomimetic Oxidation of Cyclohexane. Bull. Korean Chem. Soc. 1994, 15 (6), 424-427.

Barton, D. H. R.; Doller, D., The Selective Functionalization of Saturated Hydrocarbons: Gif Chemistry. Acc. Chem. Res. 1992, 25 (11), 504-512.

Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L., Iodine(V) Reagents in Organic Synthesis. Part 4. o-Iodoxybenzoic Acid as a Chemospecific Tool for Single Electron Transfer-Based Oxidation Processes. J. Am. Chem. Soc. 2002, 124 (10), 2245-2258.

Ladziata, U.; Zhdankin, V. V., Hypervalent iodine(V) reagents in organic synthesis. Arkivoc 2006, 2006 (ix), 26-58.

Sterckx, H.; Morel, B.; Maes, B. U. W., Catalytic Aerobic Oxidation of C(sp3)−H Bonds. Angew. Chem. Int. Ed. 2018, 58 (24), 7946-7970.

Recupero, F.; Punta, C., Free Radical Functionalization of Organic Compounds Catalyzed by N-Hydroxyphthalimide. Chem. Rev. 2007, 107 (9), 3800-3842.

Galli, C.; Gentili, P.; Lanzalunga, O., Hydrogen Abstraction and Electron Transfer with Aminoxyl Radicals: Synthetic and Mechanistic Issues. Angew. Chem. Int. Ed. 2008, 47 (26), 4790-4796.

Wang, J.; Zhang, C.; Ye, X.-Q.; Du, W.; Zeng, S.; Xu, J.-H.; Yin, H., An efficient and practical aerobic oxidation of benzylic methylenes by recyclable N-hydroxyimide. RSC Adv. 2021, 11 (5), 3003-3011.

Hosseinzadeh, R.; Mavvaji, M.; Tajbakhsh, M.; Lasemi, Z., Synthesis and characterization of N-hydroxyphthalimide immobilized on SiO2-coated Fe3O4 nanoparticles as magnetic catalyst for oxidation of benzyl alcohols and hydrocarbons. J. Iran. Chem. Soc. 2018, 15, 893-904.

Ishii, Y.; Iwahama, T.; Sakaguchi, S.; Nakayama, K.; Nishiyama, Y., Alkane Oxidation with Molecular Oxygen Using a New Efficient Catalytic System: N-Hydroxyphthalimide (NHPI) Combined with Co(acac)n (n = 2 or 3). J. Org. Chem. 1996, 61 (14), 4520-4526.

Ishii, Y.; Sakaguchi, S., Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides. Catal. Today 2006, 117 (1-3), 105-113.

Lisicki, D.; Orlińska, B., Oxidation of cycloalkanes catalysed by N-hydroxyimides in supercritical carbon dioxide. Chem. Pap. 2020, 74, 711-716.

Coseri, S., N-Hydroxyphthalimide (NHPI)/Lead Tetraacetate, a Peculiar System for the Phthalimide-N-Oxyl (PINO) Radical Generation. Mini-Rev. Org. Chem. 2008, 5 (3), 222-227.

Coseri, S., Phthalimide‐N‐oxyl (PINO) Radical, a Powerful Catalytic Agent: Its Generation and Versatility Towards Various Organic Substrates. Catal. Rev. - Sci. Eng. 2009, 51 (2), 218-292.

Caruso, M.; Petroselli, M.; Cametti, M., Design and Synthesis of Multipurpose Derivatives for N-Hydroxyimide and NHPI-based Catalysis Applications. ChemistrySelect 2021, 6 (45), 12975-12980.

Andrade, M. A.; Martins, L. M. D. R. S., Organocatalysis Meets Hydrocarbon Oxyfunctionalization: the Role of N-Hydroxyimides. Eur. J. Org. Chem. 2021, 2021 (33), 4715-4727.

Guha, S. K.; Ishii, Y., An Efficient Method for the Catalytic Aerobic Oxidation of Cycloalkanes using 3,4,5,6-Tetrafluoro-N-Hydroxyphthalimide (F4-NHPI). Egypt. J. Chem. 2022, 65 (2), 327-335.

Takamatsu, K.; Kasai, M.; Nishizawa, H.; Suzuki, R.; Konno, H., Aerobic oxidation of aldehydes to acids with N-hydroxyphthalimide derivatives. Tetrahedron Lett. 2021, 81, 153320.

Melone, L.; Punta, C., Metal-free aerobic oxidations mediated by N-hydroxyphthalimide. A concise review. Beilstein J. Org. Chem. 2013, 9, 1296-1310.

Galeotti, M.; Salamone, M.; Bietti, M., Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp3)–H functionalization promoted by electrophilic reagents. Chem. Soc. Rev. 2022, 51 (6), 2171-2223.

Wang, Y.; Yao, J.; Li, H., Aerobic Oxidations via Organocatalysis: A Mechanistic Perspective. Synthesis 2022, 54 (03), 535-544.

Kuznetsova, N. I.; Kuzneysova, L. I.; Yakovina, O. A.; Karmadonova, I. E.; Bal'zhinimaev, B. S., An Improved Catalytic Performance of Fe(III)-promoted NHPI in the Oxidation of Hydrocarbons to Hydroperoxides. Catal. Letters 2020, 150, 1020-1027.

Sheldon, R. A.; Arends, I. W. C. E., Catalytic oxidations mediated by metal ions and nitroxyl radicals. J. Mol. Catal. A: Chem. 2006, 251 (1-2), 200-214.

Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H., Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. J. Catal. 2012, 289, 259-265.

Dobras, G.; Sitko, M.; Petroselli, M.; Caruso, M.; Cametti, M.; Punta, C.; Orlińska, B., Solvent‐Free Aerobic Oxidation of Ethylbenzene Promoted by NHPI/Co(II) Catalytic System: The Key Role of Ionic Liquids. ChemCatChem 2020, 12 (1), 259-266.

Gao, B.; Meng, S.; Yang, X., Synchronously Synthesizing and Immobilizing N-Hydroxyphthalimide on Polymer Microspheres and Catalytic Performance of Solid Catalyst in Oxidation of Ethylbenzene by Molecular Oxygen. Org. Process Res. Dev. 2015, 19 (10), 1374-1382.

Huang, C.; Liu, R.; Yang, W.; Zhang, C.; Zhu, H., Iron(II) phthalocyanine immobilized SBA-15 catalysts: Preparation, characterization and application for toluene selective aerobic oxidation. Inorganica Chim. Acta 2017, 467, 307-315.

Bao, L.; Li, X.; Wu, Z.; Yuan, X.; Luo, H., N-hydroxyphthalimide incorporated onto Cu-BTC metal organic frameworks: An novel catalyst for aerobic oxidation of toluene. Res. Chem. Intermed. 2016, 42, 5527-5539.

Tan, Z.; Zhu, J.; Yang, W., Conjugated copper(II) porphyrin polymer and N-hydroxyphthalimide as effective catalysts for selective oxidation of cyclohexylbenzene. Catal. Commun. 2017, 94, 60-64.

Mahmood, S.; Xu, B.; Ren, T.; ZB., Z.; Liu, X.-M.; Zhang, S., Cobalt/N-Hydroxyphthalimide(NHPI)-Catalyzed Aerobic Oxidation of Hydrocarbons with Ionic Liquid Additive. Mol. Catal. 2018, 447, 90-96.

Faraji, A. R.; Ashouri, F.; Hekmatian, Z.; Heydari, S.; Mosazadeh, S., Organosuperbase dendron manganese complex grafted on magnetic nanoparticles; heterogeneous catalyst for green and selective oxidation of ethylbenzene, cyclohexene and oximes by molecular oxygen. Polyhedron 2019, 157, 90-106.

Blandez, J. F.; S., N.; Álvaro, M.; Garcia, H., N‐Hydroxyphthalimide Anchored on Diamond Nanoparticles as a Selective Heterogeneous Metal‐free Oxidation Catalyst of Benzylic Hydrocarbons and Cyclic Alkenes by Molecular O2. ChemCatChem 2018, 10 (1), 198-205.

Li, Z.; Fiser, B.; Jiang, B.; Li, J.; Xu, B.; Zhang, S., N-Hydroxyphthalimide/benzoquinone-catalyzed chlorination of hydrocarbon C—H bond using N-chlorosuccinimide. Org. Biomol. Chem. 2019, 17 (13), 3403-3408.

Wang, L.; Zhang, Y.; Du, R.; Yuan, H.; Wang, Y.; Yao, J.; Li, H., Selective One‐Step Aerobic Oxidation of Cyclohexane to ϵ‐Caprolactone Mediated by N‐Hydroxyphthalimide (NHPI). ChemCatChem 2019, 11 (9), 2260-2264.

Liu, G.; Tang, R.; Wang, Z., Metal-Free Allylic Oxidation with Molecular Oxygen Catalyzed by g-C3N4 and N-Hydroxyphthalimide. Catal. Letters 2014, 144, 717-722.

Zhao, Q.; Chen, K.; Zhang, W.; Yao, J.; Li, H., Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues. J. Mol. Catal. A: Chem. 2015, 402, 79-82.

Hu, Y.; Chen, L.; Li, B., NHPI/tert-butyl nitrite: A highly efficient metal-free catalytic system for aerobic oxidation of alcohols to carbonyl compounds using molecular oxygen as the terminal oxidant. Catal. Commun. 2016, 83, 82-87.

Arends, I. W. C. E.; Sasidharan, M.; Kühnle, A.; Duba, M.; Jost, C.; Sheldon, R. A., Selective catalytic oxidation of cyclohexylbenzene to cyclohexylbenzene-1-hydroperoxide: a coproduct-free route to phenol. Tetrahedron 2002, 58 (44), 9055-9061.

Punniyamurthy, T.; Velusamy, S.; Iqbal, J., Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chem. Rev. 2005, 105 (6), 2329-2364.

Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V., C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem. Sci. 2020, 11 (48), 12974-12993.

Capraro, M. G.; Franchi, P.; Lanzalunga, O.; Lapi, A.; Lucarini, M., Chiral N-Hydroxybenzamides as Potential Catalysts for Aerobic Asymmetric Oxidations. J. Org. Chem. 2014, 79 (14), 6435-6443.

Baciocchi, E.; Bietti, M.; Di Fusco, M.; Lanzalunga, O.; Raponi, D., Electron-Transfer Properties of Short-Lived N-Oxyl Radicals. Kinetic Study of the Reactions of Benzotriazole-N-oxyl Radicals with Ferrocenes. Comparison with the Phthalimide-N-oxyl Radical. J. Org. Chem. 2009, 74 (15), 5576-5583.

Mazzonna, M.; Bietti, M.; DiLabio, G. A.; Lanzalunga, O.; Salamone, M., Importance of π-Stacking Interactions in the Hydrogen Atom Transfer Reactions from Activated Phenols to Short-Lived N-Oxyl Radicals. J. Org. Chem. 2014, 79 (11), 5209-5218.

Nutting, J. E.; Rafiee, M.; Stahl, S. S., Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chem. Rev. 2018, 118 (9), 4834-4885.

Amorati, R.; Lucarini, M.; Mugnaini, V.; Pedulli, G. F.; Minisci, F.; Recupero, F.; Fontana, F.; Astolfi, P.; Greci, L., Hydroxylamines as Oxidation Catalysts: Thermochemical and Kinetic Studies. J. Org. Chem. 2003, 68 (5), 1747-1754.

Jenkins, T. C.; Perkins, M. J., Acyl nitroxides. Part 4. Estimation of OH bond dissociation energies for N-t-butylhydroxamic acids. J. Chem. Soc., Perkin Trans. 2 1983, (5), 717-720.

Koshino, N.; Cai, Y.; Espenson, J. H., Kinetic Study of the Phthalimide N-Oxyl (PINO) Radical in Acetic Acid. Hydrogen Abstraction from C−H Bonds and Evaluation of O−H Bond Dissociation Energy of N-Hydroxyphthalimide. J. Phys. Chem. A 2003, 107 (21), 4262-4267.

Mahoney, L. R.; Mendenhall, G. D.; Ingold, K. U., Calorimetric and equilibrium studies on some stable nitroxide and iminoxy radicals. Approximate oxygen-hydrogen bond dissociation energies in hydroxylamines and oximes. J. Am. Chem. Soc. 1973, 95 (26), 8610-8614.

Sheldon, R. A.; Arends, I. W. C. E., Organocatalytic Oxidations Mediated by Nitroxyl Radicals. Adv. Synth. Catal. 2004, 346 (9-10), 1051-1071.

Patil, M. R.; Debhia, N. P.; Kapdi, A. R.; Kumar, A. V., Cobalt(II)/N-Hydroxyphthalimide-Catalyzed Cross-Dehydrogenative Coupling Reaction at Room Temperature under Aerobic Condition. J. Org. Chem. 2018, 83 (8), 4477-4490.

Yang, C.; Farmer, L. A.; Pratt, D. A.; Maldonado, S.; Stephenson, C. R. J., Mechanism of Electrochemical Generation and Decomposition of Phthalimide-N-oxyl. J. Am. Chem. Soc. 2021, 143 (27), 10324-10332.

Hermans, I.; Nguyen, T. L.; Jacobs, P. A.; Peeters, J., Autoxidation of cyclohexane: conventional views challenged by theory and experiment. ChemPhysChem 2005, 6, 637-645.

Daicel Chemical employs NHPI catalyst method for adipic acid. Focus on Catalysts 2004, 2004 (1), 7.

Hermans, I.; Van Deun, J.; Houthoofd, K.; Peeters, J.; Jabobs, P. A., Silica-immobilized N-hydroxyphthalimide: An efficient heterogeneous autoxidation catalyst. J. Catal. 2007, 251 (1), 204-212.

Wang, L.; Zhang, Y.; Yuan, H.; Du, R.; Yao, J.; Li, H., Selective Aerobic Oxidation of Secondary C (sp3)-H Bonds with NHPI/CAN Catalytic System. Catal. Letters 2021, 151 (6), 1663-1669.

Minisci, F.; Recupero, F.; Cecchetto, A.; Gambarotti, C.; Punta, C.; Paganelli, R.; Pedulli, G. F.; Fontana, F., Solvent and Temperature Effects in the Free Radical Aerobic Oxidation of Alkyl and Acyl Aromatics Catalysed by Transition Metal Salts and N-Hydroxyphthalimide: New Processes for the Synthesis of p-Hydroxybenzoic Acid, Diphenols, and Dienes for Liquid Crystals and Cross-Linked Polymers. Org. Process Res. Dev. 2004, 8 (2), 163-168.

Minisci, F.; Recupero, F.; Pedulli, G. F.; Lucarini, M., Transition metal salts catalysis in the aerobic oxidation of organic compounds: Thermochemical and kinetic aspects and new synthetic developments in the presence of N-hydroxy-derivative catalysts. J. Mol. Catal. A: Chem. 2003, 204-205, 63-90.

Shimizu, A.; Tanaka, K.; Ogawa, H.; Matsuoka, Y.; Fujimori, M.; Nagamori, Y.; Hamachi, H.; Kimura, K., An Industrial Process for Adipic Acid Production by the Liquid-Phase Oxidation of Cyclohexanone with Molecular Oxygen. Bull. Chem. Soc. Jpn 2003, 76 (10), 1993-2001.

Minisci, F.; Punta, C.; Recupero, F., Mechanisms of the aerobic oxidations catalyzed by N-hydroxyderivatives: Enthalpic, polar and solvent effects, “molecule-induced homolysis” and synthetic involvements. J. Mol. Catal. A: Chem. 2006, 251 (1-2), 129-149.

Koshino, N.; Saha, B.; Espenson, J. H., Kinetic Study of the Phthalimide N-Oxyl Radical in Acetic Acid. Hydrogen Abstraction from Substituted Toluenes, Benzaldehydes, and Benzyl Alcohols. J. Org. Chem. 2003, 68 (24), 9364-9370.

Baciocchi, E.; Gerini, F.; Lanzalunga, O., Reactivity of Phthalimide N-Oxyl Radical (PINO) toward the Phenolic O−H Bond. A Kinetic Study. J. Org. Chem. 2004, 69 (25), 8963-8966.

Ueda, C.; Noyama, M.; Ohmori, H.; Masui, M., Reactivity of Phthalimide-N-oxyl : A Kinetic Study. Chem. Pharm. Bull. 1987, 35 (4), 1372-1377.

Gutmann, V., Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 1976, 21 (9), 661-670.

Opeida, I. A.; Kushch, O. V.; Kompanets, M. O.; Litvinov, Y. E.; Zosenko, O. O.; Shendrik, A. N., The Oxidative Polymerization of Vinyl Monomers in the Presence of N‐Hydroxyphthalimide. ChemistrySelect 2019, 4 (40), 11826-11832.

Kushch, O. V.; Hordieiva, I. O.; Novikova, K. V.; Litvinov, Y. E.; Kompanets, M. O.; Shendrik, A. N.; Opeida, I. A., Kinetics of N-oxyl Radicals' Decay. J. Org. Chem. 2020, 85 (11), 7112-7124.

Petroselli, M.; Melone, L.; Cametti, M.; Punta, C., Lipophilic N‐Hydroxyphthalimide Catalysts for the Aerobic Oxidation of Cumene: Towards Solvent‐Free Conditions and Bac. Chem. Eur. J. 2017, 23 (44), 10616-10625.

Liang, F.; Zhong, W.; Xiang, L.; Mao, L.; Xu, Q.; Kirk, S. R.; Yin, D., Synergistic hydrogen atom transfer with the active role of solvent: Preferred one-step aerobic oxidation of cyclohexane to adipic acid by N-hydroxyphthalimide. J. Catal. 2019, 378, 256-269.

Taha, N.; Sasson, Y., Superior Performance of NHPI Cocatalyst in the Autoxidation of Methylbenzenes under Solvent-Free Phase Transfer Conditions. Org. Process Res. Dev. 2010, 14 (3), 701-704.

Yang, K.-K.; Wang, X.-L.; Wang, Y.-Z., Progress in Nanocomposite of Biodegradable Polymer. J. Ind. Eng. Chem. 2007, 13 (4), 485-500.

Luckachan, G. E.; Pillai, C. K. S., Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011, 19 (3), 637-676.

Sinha, V. R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A., Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int. J. Pharm. 2004, 278 (1), 1-23.

Strukul, G., Transition Metal Catalysis in the Baeyer–Villiger Oxidation of Ketones. Angew. Chem. Int. Ed. 1998, 37 (9), 1198-1209.

ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A., The Baeyer−Villiger Reaction: New Developments toward Greener Procedures. Chem. Rev. 2004, 104 (9), 4105-4124.

Corma, A.; Nemeth, L. T.; Renz, M.; Valencia, S., Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature 2001, 412 (6845), 423-425.

Sinhamahapatra, A.; Sinha, A.; Pahari, S. K.; Sutadhar, N.; Bajaj, H. C.; Panda, A. B., Room temperature Baeyer–Villiger oxidation using molecular oxygen over mesoporous zirconium phosphat. Catalysis Science & Technology 2012, 2 (11), 2375-2382.

Drożdż, A.; Chrobok, A.; Baj, S.; Szymańska, K.; Mrowiec-Białoń, J.; Jarzębski, A. B., The chemo-enzymatic Baeyer–Villiger oxidation of cyclic ketones with an efficient silica-supported lipase as a biocatalyst. Appl. Catal. A: Gen. 2013, 467, 163-170.

Einhorn, C.; Einhorn, J.; Marcadal, C.; Pierre, J.-L., Oxidation of organic substrates by molecular oxygen mediated by N-hydroxyphthalimide (NHPI) and acetaldehyde. Chem. Commun. 1997, (5), 447-448.

Wang, L.; Wang, Y.; Du, R.; Dao, R.; Yuan, H.; Liang, C.; Yao, J.; Li, H., N-hydroxyphthalimide (NHPI) Promoted Aerobic Baeyer-Villiger Oxidation in the Presence of Aldehydes. ChemCatChem 2018, 10 (21), 4947-4952.

Gunchenko, P. A.; Li, J.; Liu, B.; Chen, H.; Pashenko, A. E.; Bakhonsky, V. V.; Zhuk, T. S.; Fokin, A. A., Aerobic oxidations with N-hydroxyphthalimide in trifluoroacetic acid. Mol. Catal. 2018, 447, 72-79.

Zhuk, T. S.; Gunchenko, P. A.; Korovai, Y. Y.; Schreiner, P. R.; Fokin, A. A., Mechanisms of the C—H halogenation of adamantane in the presence of N-hydroxyphthalimide. Theor. Exp. Chem. 2008, 44 (1), 48-53.

Fokin, A. A.; Tkachenko, B. A.; Gunchenko, P. A.; Gusev, D. V.; Schreiner, P. R., Functionalized Nanodiamonds Part I. An Experimental Assessment of Diamantane and Computational Predictions for Higher Diamondoids. Chem. Eur. J. 2005, 11 (23), 7091-7101.

Fokin, A. A.; Schreiner, P. R., Selective Alkane C-H Bond Substitutions: Strategies for the Preparation of Functionalized Diamondoids (Nanodiamonds). Strateg. Tactics Org. Synth. 2012, 8, 317-350.

Matsunaka, K.; Iwahama, T.; Sakaguchi, S.; Ishii, Y., A remarkable effect of quaternary ammonium bromide for the N-hydroxyphthalimide-catalyzed aerobic oxidation of hydrocarbons. Tetrahedron Lett. 1999, 40 (11), 2165-2168.

Suzuki, H.; Nonoyama, N., Highly selective N- and O-functionalization of adamantane utilizing nitrogen oxides. Kyodai-nitration of aliphatic hydrocarbons. Chem. Commun. 1996, (15), 1783-1784.

Suzuki, H.; Nonoyama, N., Ozone-mediated nitration of adamantane and derivatives with nitrogen dioxide: selectivity in the hydrogen abstraction by nitrogen trioxide and subsequent coupling of the resulting carbon radicals with nitrogen dioxide 1. J. Chem. Soc., Perkin Trans. 1 1997, (20), 2965-2972.

Fokin, A. A.; Merz, A.; Fokina, N. A.; Schwertfeger, H.; Liu, S. L.; Dahl, J. E. P.; Carlson, R. M. K.; Schreiner, P. R., Synthetic Routes to Aminotriamantanes, Topological Analogues of the Neuroprotector Memantine®. Synthesis 2009, (6), 909-912.

Sonkusare, S. K.; Kaul, C. L.; Pamarao, P., Dementia of Alzheimer’s disease and other neurodegenerative disorders—memantine, a new hope. Pharmacol. Res. 2005, 51 (1), 1-17.

Wang, J.-J.; Chern, Y.-T., Biological activities of new poly(N 1-adamantylmaleimide) and poly(N-1-diamantylmaleimide). J. Biomater. Sci., Polym. Ed. 1996, 7 (10), 905-915.

Ghosh, A.; Sciamanna, S. F.; Dahl, J. E. P.; Liu, S.; Carlson, R. M. K.; Schiraldi, D. A., Effect of nanoscale diamondoids on the thermomechanical and morphological behaviors of polypropylene and polycarbonate. J. Polym. Sci. B Polym. Phys. 2007, 45 (9), 1077-1089.

Fukaminato, T.; Umemoto, T.; Iwata, Y.; Yokojima, S.; Yoneyama, M.; Nakamura, S.; Irie, M., Photochromism of Diarylethene Single Molecules in Polymer Matrices. J. Am. Chem. Soc. 2007, 129 (18), 5932-5938.

Fokin, A. A.; Schreiner, P. R., Selective Alkane Transformations via Radicals and Radical Cations: Insights into the Activation Step from Experiment and Theory. Chem. Rev. 2002, 102 (5), 1551-1594.

Smith, G. W.; Williams, H. D., Some Reactions of Adamantane and Adamantane Derivatives. J. Org. Chem. 1961, 26 (7), 2207-2212.

Minisci, F.; Fontana, F.; Zhao, L.; Banfi, S.; Quici, S., Regio- and chemo-selectivity of adamantane halogenation by Gif-Barton and metalloporphyrin catalysis and by classical free-radical reactions. Tetrahedron Lett. 1994, 35 (43), 8033-8036.

Tabushi, I.; Hamuro, J.; Oda, R., Free-radical substitution on adamantane. J. Am. Chem. Soc. 1967, 89 (26), 7127-7129.

Schreiner, P. R.; Lauenstein, O.; Butova, E. D.; Gunchenko, P. A.; Kolomitsin, I. V.; Wittkopp, A.; Feder, G.; Fokin, A. A., Selective Radical Reactions in Multiphase Systems: Phase‐Transfer Halogenations of Alkanes. Chem. Eur. J. 2001, 7 (23), 4996-5003.

Liguori, L.; Bjørsvik, H.-R.; Bravo, A.; Fontana, F.; Minisci, F., A new direct homolytic iodination reaction of alkanes by perfluoroalkyl iodides. Chem. Commun. 1997, (16), 1501-1502.

Minisci, F.; Fontana, F.; Araneo, S.; Recupero, F.; Banfi, S.; Quici, S., Kharasch and Metalloporphyrin Catalysis in the Functionalization of Alkanes, Alkenes, and Alkylbenzenes by t-BuOOH. Free Radical Mechanisms, Solvent Effect, and Relationship with the Gif Reaction. J. Am. Chem. Soc. 1995, 117 (1), 226-232.

Fokin, A. A.; Schreiner, P. R., Metal‐Free, Selective Alkane Functionalizations. Adv. Synth. Catal. 2003, 345 (9-10), 1035-1052.

Ishii, Y.; Kato, S.; Iwahama, T.; Sakaguchi, S., Hydroxylation of polycyclic alkanes with molecular oxygen catalyzed by N-hydroxyphthalimide (NHPI) combined with transition metal salts. Tetrahedron Lett. 1996, 37 (28), 4493-4496.

Olah, G. A.; Lin, H. C. H., Electrophilic reactions at single bonds. V. Nitration and nitrolysis of alkanes and cycloalkanes with nitronium salts. J. Am. Chem. Soc. 1971, 93 (5), 1259-1261.

Olah, G. A.; Ramaiah, P.; Rao, C. B.; Sandford, G.; Golam, R.; Trivedi, N. J.; Olah, J. A., Electrophilic reactions at single bonds. 25. Nitration of adamantane and diamantane with nitronium tetrafluoroborate. J. Am. Chem. Soc. 1993, 115 (16), 7246-7249.

Fokin, A. A.; Schreiner, P. R.; Schleyer, P. v. R.; Gunchenko, P. A., Electrophilic and Oxidative Activation of the Central C−C Bond in [3.3.n]Propellanes: A Theoretical Study. J. Org. Chem. 1998, 63 (19), 6494-6502.

Stetter, H.; Wulff, C., Über Verbindungen mit Urotropin-Struktur, XVIII. Über die Bromierung des Adamantans. Chem. Ber. 1960, 93 (6), 1366-1371.

Mello, R.; Cassidei, L.; Fiorentino, M.; Fusco, C.; Curci, R., Oxidations by methyl(trifluoromethyl)dioxirane. 3. Selective polyoxyfunctionalization of adamantane. Tetrahedron Lett. 1990, 31 (21), 3067-3070.

D'Accolti, L.; Dinoi, A.; Fusco, C.; Russo, A.; Curci, R., Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 5. Selective Oxidation of Hydrocarbons Bearing Cyclopropyl Moieties. J. Org. Chem. 2003, 68 (20), 7806-7810.

Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R., Oxidations by methyl(trifluoromethyl)dioxirane. 2. Oxyfunctionalization of saturated hydrocarbons. J. Am. Chem. Soc. 1989, 111 (17), 6749-6757.

Ranganathan, D.; Kurur, S., Synthesis of totally chiral, multiple armed, poly Glu and poly Asp scaffoldings on bifunctional adamantane core. Tetrahedron Lett. 1997, 38 (7), 1265-1268.

Pathak, R.; Marx, A., An Adamantane-Based Building Block for DNA Networks. Chem. Asian J. 2011, 6 (6), 1450-1455.

Maison, W.; Frangioni, J. V.; Pannier, N., Synthesis of Rigid Multivalent Scaffolds Based on Adamantane. Org. Lett. 2004, 6 (24), 4567-4569.

Lysenko, A. B.; Senchyk, G. A.; Lincke, J.; Lässig, D.; Fokin, A. A.; Butova, E. D.; Schreiner, P. R.; Krautscheid, H.; Domasevitch, K. V., Metal oxide-organic frameworks (MOOFs), a new series of coordination hybrids constructed from molybdenum(vi) oxide and bitopic 1,2,4-triazole linkers. Dalton Trans. 2010, 39 (17), 4223-4231.

Kim, J.; Chen, B.; Reineke, T. M.; Li, H.; Eddaoudi, M.; Moler, D. B.; O'Keeffe, M.; Yaghi, O. M., Assembly of Metal−Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures. J. Am. Chem. Soc. 2001, 123 (34), 8239-8247.

Malik, A. A.; Archibald, T. G.; Baum, K.; Unroe, M. R., New high-temperature polymers based on diamantane. Macromolecules 1991, 24 (19), 5266-5268.

Chern, Y.-T.; Huang, C.-M., Synthesis and characterization of new polyimides derived from 4,9-diaminodiamantane. Polymer 1998, 39 (25), 6643-6648.

Chern, Y.-T., High Subglass Transitions Appearing in the Rigid Polyimides Derived from the Novel 1,6-Bis(4-aminophenyl)diamantane. Macromolecules 1998, 31 (6), 1898-1905.

Dang, T. D.; Dalton, M. J.; Venkatasubramanian, N.; Johnson, J. A.; Cerbus, C. A.; Feld, W. A., Synthesis and characterization of polyaryleneetherketone triphenylphosphine oxides incorporating cycloaliphatic/cage hydrocarbon structural units. J. Polym. Sci. A: Polym. Chem. 2004, 42 (23), 6134-6142.

Sinkel, C.; Agarwal, S.; Fokina, N. A.; Schreiner, P. R., Synthesis, characterization, and property evaluations of copolymers of diamantyl methacrylate with methyl methacrylate. J. Appl. Polym. Sci. 2009, 114 (4), 2109-2115.

Gowrisankar, S.; Bernhardt, B.; Becker, J.; Schreiner, P. R., Regioselective Synthesis of meta-Tetraaryl-Substituted Adamantane Derivatives and Evaluation of Their White Light Emission. Eur. J. Org. Chem. 2021, 2021 (48), 6806-6810.

Holtz, H. D., Selectivity differences of some cobalt catalyst systems in the liquid phase oxidation of alkyl aromatics. J. Org. Chem. 1972, 37 (13), 2069-2074.

Csányi, L. J.; Jáky, K., Liquid-phase oxidation of hydrocarbons in the presence of different types of phase-transfer reagents. J. Mol. Catal. A Chem. 1997, 120 (1-3), 125-138.

Haruťiak, M.; Hronec, M.; Ilavský, J., Kinetics and mechanism of phase-transfer catalyzed oxidation of p-xylene by molecular oxygen. J. Mol. Catal. 1988, 48 (2-3), 335-342.

Sakaguchi, S.; Hirabayashi, T.; Ishii, Y., First Ritter-type reaction of alkylbenzenes using N-hydroxyphthalimide as a key catalyst. Chem. Commun. 2002, (5), 516-517.

Fleming, F. F., Nitrile-containing natural products. Nat. Prod. Rep. 1999, 16 (5), 597-606.

Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C., Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. J. Med. Chem. 2010, 53 (22), 7902-7917.

Berndt, J.-P.; Ebr, F. R.; Ochman, L.; Beppler, J.; Schreiner, P. R., Selective Phthalimido-N-oxyl (PINO)-Catalyzed C–H Cyanation of Adamantane Derivatives. Synlett 2019, 30 (4), 493-498.

Kukushkin, V. Y.; Pombeiro, A. J. L., Additions to Metal-Activated Organonitriles. Chem. Rev. 2002, 102 (5), 1771-1802.

Guérinot, A.; Reymond, S.; Cossy, J., Ritter Reaction: Recent Catalytic Developments. Eur. J. Org. Chem. 2012, 2012 (1), 19-28.

Fokin, A. A.; Zhuk, T. S.; Pashenko, A. E.; Dral, P. O.; Gunchenko, P. A.; Dahl, J. E. P.; Carlson, R. M. K.; Koso, T. V.; Serafin, M.; Schreiner, P. R., Oxygen-Doped Nanodiamonds: Synthesis and Functionalizations. Org. Lett. 2009, 11 (14), 3068-3071.

Willey, T. M.; Fabbri, J. D.; Lee, J. R. I.; Schreiner, P. R.; Fokin, A. A.; Tkachenko, B. A.; Fokina, N. A.; Dahl, J. E. P.; Carlson, R. M. K.; Vance, A. L.; Yang, W.; Terminello, L. J.; van Buuren, T.; Melosh, N. A., Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold. J. Am. Chem. Soc. 2008, 130 (32), 10536-10544.

Sustainable Industrial Chemistry: Principles, Tools and Industrial Examples. WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; p 621.

Melone, L.; Gambarotti, C.; Prosperini, S.; Pastori, N.; Recupero, F.; Punta, C., Hydroperoxidation of Tertiary Alkylaromatics Catalyzed By N‐Hydroxyphthalimide and Aldehydes under Mild Conditions. Adv. Synth. Catal. 2011, 353 (1), 147-154.

Fukuda, O.; Sakaguchi, S.; Ishii, Y., Preparation of Hydroperoxides by N‐Hydroxyphthalimide‐Catalyzed Aerobic Oxidation of Alkylbenzenes and Hydroaromatic Compounds and Its Application. Adv. Synth. Catal. 2001, 343 (8), 809-813.

Yoshino, Y.; Hayashi, Y.; Iwahama, T.; Sakaguchi, S.; Ishii, Y., Catalytic Oxidation of Alkylbenzenes with Molecular Oxygen under Normal Pressure and Temperature by N-Hydroxyphthalimide Combined with Co(OAc)2. J. Org. Chem. 1997, 62 (20), 6810-6813.

Xu, J.; Shi, G.; Liang, Y.; Lu, Q.; Ji, L., Selective aerobic oxidation of toluene to benzaldehyde catalyzed by covalently anchored N-hydroxyphthalimide and cobaltous ions. Mol. Catal. 2021, 503.

Gaster, E.; Kozuch, S.; Pappo, D., Selective Aerobic Oxidation of Methylarenes to Benzaldehydes Catalyzed by N‐Hydroxyphthalimide and Cobalt(II) Acetate in Hexafluoropropan‐2‐ol. Angew. Chem. Int. Ed. 2017, 56 (21), 5912-5915.

Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives. WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; p 456.

Published

2023-01-30

How to Cite

Zhuk, T., & Babkina, V. (2023). THE POTENTIAL OF N-HYDROXYPHTHALIMIDE FOR THE LARGE-SCALE CH-OXIDATIONS. European Science, 3(sge16-03), 65–83. https://doi.org/10.30890/2709-2313.2023-16-03-014