PROCESSING OF MULTICHANNEL REMOTE SENSING DATA USING NEURAL NETWORKS

Authors

DOI:

https://doi.org/10.30890/2709-2313.2023-18-03-002

Keywords:

Multichannel images, remote sensing, neural networks

Abstract

This chapter contains the results obtained during execution of Ukrainian-French Project within “Dnipro” framework intended on design of methods and means for processing multichannel remote sensing data using the trained neural networks. These means can be

Metrics

Metrics Loading ...

References

Foreword to the Special Issue on Hyperspectral Image and Signal Processing /A. Plaza, J.M. Bioucas-Dias, A. Simic, W.J. Blackwell// IEEE Journal on Selected Topics in Applied Earth Observations and Remote Sensing. − 2012. − Vol. 5, No 2, P. 347-353.

Chein-I Chang Hyperspectral Data Exploitation: Theory and Applications /Chein-I Chang // Wiley-Interscience. − 2007. − 440 p.

Future Trends in Remote Sensing /S. Khorram, C.F. van der Wiele, F.H. Koch, S.A.C. Nelson, M.D. Potts// Principles of Applied Remote Sensing; Springer International Publishing,  Cham, 2016.  P. 277–285.  ISBN 978-3-319-22559-3.

Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data /N. Kussul, G. Lemoine, F.J. Gallego, S.V. Skakun, M. Lavreniuk, A. Shelestov// IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.  2016.  Vol. 9.  P. 2500–2508.  doi:10.1109/JSTARS.2016.2560141.

Van Zyl Marais, I. Onboard image quality assessment for a small low earth orbit satellite /I. van Zyl Marais, W.H. Steyn, J.A. du Preez// Proceedings of the 7th IAA Symposium on Small Satellites for Earth Observation.  Berlin, Germany.  2009.  Paper IAA B7-0602 p.

Smaller Satellites, Larger Constellations: Trends and Design Issues for Earth Observation Systems /S. Marcuccio, S. Ullo, M. Carminati, O. Kanoun // IEEE Aerosp. Electron. Syst. Mag.  2019.  Vol. 34.  P. 50–59.  doi:10.1109/MAES.

Li, Y. Image deblurring for satellite imagery using small-support-regularized deconvolution /Y. Li, K.C. Clarke// ISPRS J. Photogramm. Remote Sens.  2013.  Vol. 85.  P. 148–155.  doi:10.1016/j.isprsjprs.2013.08.002.

Xia, H. Remote Sensing Image Deblurring Algorithm Based on WGAN /Xia H., C. Liu// In Service-Oriented Computing – ICSOC 2018 Workshops; Lecture Notes in Computer Science; Springer International Publishing.  Cham, 2019.  Vol. 11434.  P. 113–125 ISBN 978-3-030-17641-9.

Christophe, E. Hyperspectral Data Compression Tradeoff /E. Christophe.  in Optical Remote Sensing.  Berlin: Springer, 2011.  Vol. 8.  P. 9-29.

Blanes, I. A Tutorial on Image Compression for Optical Space Imaging Systems /I. Blanes, E. Magli, J. Serra-Sagrista// IEEE Geoscience and Remote Sensing Magazine.  2014.  Vol. 2, No. 3.  P. 8-26.

Uss, M. Efficient Discrimination and Localization of Multimodal Remote Sensing Images Using CNN-Based Prediction of Localization Uncertainty /M. Uss, B. Vozel, V. Lukin, K. Chehdi// Remote Sensing.  2020.  Vol. 12.  703 p.

Uss, M. Blind noise parameters estimation for multichannel images using deep convolutional neural networks /M. Uss, B. Vozel, V. Lukin, K. Chehdi// Proc. SPIE 11155, Image and Signal Processing for Remote Sensing XXV.  France. October 2019.  Vol. 1115514.  11 p.

Blind Prediction of Original Image Quality for Sentinel SAR Data /O. Rubel, A. Rubel, V. Lukin, M. Carli, K. Egiazarian// In Proceedings of the 2019 8th European Workshop on Visual Information Processing (EUVIP); IEEE.  Rome, Italy, 2019.  P. 105–110.

Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment /S. Bosse, D. Maniry, K.-R. Muller, T. Wiegand, W. Samek// IEEE Trans. Image Process.  2018.  Vol. 27.  P. 206–219.  doi:10.1109/TIP.2017.2760518.

NoiseNet: Signal-Dependent Noise Variance Estimation with Convolutional Neural Network /M.L. Uss, B. Vozel, V. Lukin, K. Chehdi// Proceedings of the 19th International Conference, ACIVS 2018.  Poitiers, France.  2018. September 24–27.  12 p.

NN-Based Prediction of Sentinel-1 SAR Image Filtering Efficiency /O. Rubel, V. Lukin, A. Rubel, K. Egiazarian// Geosciences.  2019.  Vol. 9, No. 7.  P. 290.

Prediction of Lee filter performance for Sentinel-1 SAR images / O. Rubel, V. Lukin, A. Rubel, K. Egiazarian// IS&T International Symposium on Electronic Imaging 2020, Image Quality and System Performance.  USA.  January 2020.  P. 371-1 – 371-6.

Li, X. Neural Image Compression and Explanation /X. Li, S. Ji// IEEE Access.  2020.  1908.08988.pdf (arxiv.org)

Neural Image Compression for Gigapixel Histopathology Image Analysis /D. Tellez et al.// IEEE Transactions on Pattern Analysis and Machine Intelligence.  2021.  Vol. 43, Iss. 2.  P 567–578.  https://doi.org/ 10.1109/TPAMI.2019.2936841.

Full-Reference Quality Metric Based on Neural Network to Assess the Visual Quality of Remote Sensing Images /O. Ieremeiev, V. Lukin, K. Okarma, K. Egiazarian// Remote Sensing.  July 2020.  31 p.  DOI: 10.3390/rs12152349.

A deep neural network for image quality assessment /S. Bosse, D. Maniry, T. Wiegand, W. Samek// In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP).  IEEE: Phoenix, AZ, USA.  2016.  P. 3773–3777.

A Method for the Evaluation of Image Quality According to the Recognition Effectiveness of Objects in the Optical Remote Sensing Image Using Machine Learning Algorithm /T. Yuan, X. Zheng, X. Hu, W. Zhou, W. Wang// PLoS ONE.  2014.  Vol. 9, No. 1.  e86528. https://doi.org/ 10.1371/journal.pone.0086528.

Analysis of classification accuracy for pre-filtered multichannel remote sensing data /V. Lukin, S. Abramov, S. Krivenko, A. Kurekin, O. Pogrebnyak// Expert Syst. Appl.  2013.  Vol. 40.  P. 6400–6411.

A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring /N. Joshi, M. Baumann, et al.// Remote Sensing.  2016.  Vol. 8.  70 p.

Moreno-Villamarin, D. Predicting the Quality of Fused Long Wave Infrared and Visible Light Images / D. Moreno-Villamarin, H. Benitez-Restrepo, A. Bovik// IEEE Trans. Image Process.  2017.  Vol. 26.  P. 3479–3491.

Jagalingam, P. A Review of Quality Metrics for Fused Image /P. Jagalingam, Arkal Vittal Hegde// Aquatic Procedia.  2015.  Vol. 4.  P. 133-142. https://doi.org/ 10.1016/j.aqpro.2015.02.019.

Zitová, B. Image registration methods: a survey /B. Zitová, J. Flusser// Image and Vision Computing.  2003.  Vol. 21.  P. 977-1000.

Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity /Y. Ye, J. Shan, L. Bruzzone, L. Shen// IEEE Trans. Geosci. Remote Sens.  2017.  Vol. 55.  P. 2941-2958.

Modifications in the SIFT operator for effective SAR image matching /S. Suri, P. Schwind, J. Uhl, P. Reinartz// International Journal of Image and Data Fusion.  2010.  Vol. 1.  P. 243-256.

Murphy, J. M. Automatic Image Registration of Multimodal Remotely Sensed Data With Global Shearlet Features /J. M. Murphy, J. L. Moigne, D. J. Harding// IEEE Trans. Geosci. Remote Sens.  2016.  Vol. 54.  P. 1685 – 1704.

Selection of a Similarity Measure Combination for a Wide Range of Multimodal Image Registration Cases /M. L. Uss, B. Vozel, S. K. Abramov, K. Chehdi// IEEE Transactions on Geoscience and Remote Sensing.  2021.  Vol. 59.  P. 60-75.

MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration /M. P. Heinrich, M. Jenkinson, M. Bhushan, T. Matin, F. V. Gleeson, S. M. Brady// Medical Image Analysis.  2012.  Vol. 16.  P. 1423-1435.

Lowe, D. Distinctive Image Features from Scale-Invariant Keypoints /D. Lowe.  International Journal of Computer Vision. 2004.  Vol. 60.  P. 91-110.

En, S. TS-NET: Combining Modality Specific and Common Features for Multimodal Patch Matching /S. En, A. Lechervy, F. Jurie// in 2018 25th IEEE International Conference on Image Processing (ICIP).  Athens, Greece.  2018.  P. 3024-3028.

Efficient Discrimination and Localization of Multimodal Remote Sensing Images Using CNN-Based Prediction of Localization Uncertainty /M. Uss, B. Vozel, V. Lukin, K. Chehdi// Remote Sensing.  2020.  Vol. 12. 

p.

En, S. TS-NET: Combining Modality Specific and Common Features for Multimodal Patch Matching /S. En, A. Lechervy, F. Jurie// in 2018 25th IEEE International Conference on Image Processing (ICIP).  Athens, Greece.  2018.  P. 3024-3028.

Fawcett, T. An introduction to ROC analysis /T. Fawcett.  Pattern Recognition Letters  2006.  Vol. 27.  P. 861-874.

Ioffe, S. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift /S. Ioffe, C. Szegedy// Proceedings of the 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research.  2015.

Kingma, D. P. Adam: A method for stochastic optimization / D. P. Kingma, J. Ba// arXiv preprint arXiv:1412.6980.  2014.

Kumar, B. Learning local image descriptors with deep siamese and triplet convolutional networks by minimising global loss functions /B. Kumar, G. Carneiro, I. Reid// in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.  2016.  Las Vegas, NV, USA.  P. 5385-5394.

Tian, Y. L2-net: Deep learning of discriminative patch descriptor in euclidean space /Y. Tian, B. Fan, F. Wu// in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.  2017.  P. 661-669.

Zhong, P. Multiple-spectral-band CRFs for denoising junk bands of hyper-spectral imagery /P. Zhong, R. Wang// IEEE Transactions on Geoscience and Remote Sensing.  2013.  Vol.51, No. 4.  P. 2269–2275.

Enhancement of component images of multichannel data by denoising with reference /M. Uss, V. Lukin, S. Abramov, B. Vozel, K. Chehdi, K. Egiazarian// Newest Updates in Physical Science Research.  26 May 2021.  Vol. 5.  P. 1-22.

Automation in remote sensing data pre-processing, Space Research in Ukraine /V. Lukin, M. Uss, S. Abramov, I. Vasilyeva, G. Proskura, O. Ieremeiev, V. Abramova, O. Rubel, N. Kozhemiakina, V. Naumenko// Report to COSPAR, Periodyka.  Kiev, 2021.  P. 96-163.

Selection of Lee Filter Window Size Based on Despeckling Efficiency Prediction for Sentinel SAR Images /O. Rubel, A. Rubel, V. Lukin, K. Egiazarian// Remote Sens.  2021.  Vol. 13, No. 1887.  28 p.  https://www.mdpi.com/journal/remotesensing.

Dellepiane, S. Quality Assessment of Despeckled SAR Images /S. Dellepiane, E. Angiati// IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.  2014.  Vol. 7.  P. 691-707.

Lee, J. Digital Image Enhancement and Noise Filtering by Use of Local Statistics /Lee, J.  IEEE Transactions on Pattern Analysis and Machine Intelligence 1980.  PAMI-2.  P. 165-168.  doi: 10.1109/TPAMI. 1980.4766994.

A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise /V. Frost, J. Stiles, K. Shanmugan, J. Holtzman// IEEE Transactions on Pattern Analysis and Machine Intelligence.  1982.  PAMI-4.  P. 157-166.  doi: 10.1109/TPAMI.1982.4767223.

A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images /F. Argenti, A. Lapini, T. Bianchi, L. Alparone// IEEE Geoscience and Remote Sensing Magazine.  2013.  Vol. 1.  P. 6-35.  doi: 10.1109/MGRS. 2013.2277512.

Kupidura, P. Comparison of Filters Dedicated to Speckle Suppression in SAR Images /Kupidura, P.  Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.  2016.  Vol. XLI–B7.  P. 269–276.  doi:10.5194/isprs-archives-XLI-B7-269-2016.

Fast Adaptive Nonlocal SAR Despeckling /D. Cozzolino, S. Parrilli, G. Scarpa, G. Poggi, L. Verdoliva// IEEE Geoscience and Remote Sensing Letters.  2014.  Vol. 11.  P. 524-528.  doi: 10.1109/LGRS. 2013.2271650.

Solbo, S. A Stationary Wavelet-Domain Wiener Filter for Correlated Speckle /S. Solbo, T. Eltoft// IEEE Transactions on Geoscience and Remote Sensing.  2008.  Vol. 46.  P. 1219-1230.  doi: 10.1109/TGRS.2007.912718.

Improved Sigma Filter for Speckle Filtering of SAR Imagery /J.S. Lee, J.H. Wen, T. Ainsworth, K.S. Chen, A. Chen// IEEE Trans. Geosci. Remote Sens.  2009.  Vol. 47.  P. 202–213.  doi:10.1109/TGRS.2008.2002881.

A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage /S. Parrilli, M. Poderico, C. Angelino, L. Verdoliva// IEEE Trans. Geosci. Remote Sens.  2012.  Vol. 50.  P. 606–616.  doi:10.1109/TGRS.2011.2161586.

Frost Filtering Algorithm of SAR Images with Adaptive Windowing and Adaptive Tuning Factor /Z. Sun, Z. Zhang, Y. Chen, S. Liu, Y. Song// IEEE Geoscience and Remote Sensing Letters.  2020.  Vol. 17.  P. 1097-1101.  doi: 10.1109/LGRS. 2019.2939208.

Wu, B. A novel method of corner detector for SAR images based on Bilateral Filter /B. Wu, S. Zhou, K. Ji// In Proceeding of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).  10-15 July 2016.  Beijing, China.  P. 2734-2737.  doi: 10.1109/IGARSS.2016.7729706.

Gupta, A. Despeckling of SAR Images via an Improved Anisotropic Diffusion Algorithm /A. Gupta, A. Tripathi, V. Bhateja// Advances in Intelligent Systems and Computing 2013.  P. 747-754.  doi: https:// doi.org/10.1007/978-3-642-35314-7_85.

Deep learning methods for SAR image despeckling: trends and perspectives /G. Fracastoro, E. Magli, G. Poggi, G. Scarpa, D. Valsesia, L. Verdoliva// ArXiv preprint arXiv: 2012.05508.  2020.

Three-state locally adaptive texture pre-serving filter for radar and optical image processing /O. Tsymbal, V. Lukin, N. Ponomarenko, A. Zelensky, K. Egiazarian, J. Astola// EURASIP J. Appl. Signal Process. 2005.  2005.  P. 1185–1204.  doi:10.1155/ASP.2005.1185.

Chatterjee, P. Is Denoising Dead? /P. Chatterjee, P. Milanfar// IEEE Trans. Image Process.  2010.  Vol. 19.  P. 895–911.  doi:10.1109/ TIP.2009.2037087.

Rubel, O. Prediction of Despeckling Efficiency of DCT-based filters Applied to SAR Images /O. Rubel, V. Lukin, F. de Medeiros// In Proceeding of the International Conference on Distributed Computing in Sensor Systems.  10–12 June 2015.  Fortaleza, Brazil.  P. 159–168.  doi:10.1109/ DCOSS.2015.16.

NN-Based Prediction of Sentinel-1 SAR Image Filtering Efficiency /O. Rubel, V. Lukin, A. Rubel, K. Egiazarian// Geosciences 2019.  Vol. 9.  290 p.  https://doi. org/10.3390/geosciences9070290.

Rubel, O. Additive Spatially Correlated Noise Suppression by Robust Block Matching and Adaptive 3D Filtering /O. Rubel, V. Lukin, K. Egiazarian// J. Imaging Sci. Technol.  2018.  Vol. 62.  P. 60401-1–60401-11.  doi:10.2352/J.ImagingSci. Technol.2018.62.6.060401.

Goossens, B. Removal of Correlated Noise by Modeling the Signal of Interest in the Wavelet Domain /B. Goossens, A. Pizurica, W. Philips// IEEE Transactions on Image Processing.  2009.  Vol. 18.  P. 1153-1165.  doi: 10.1109/TIP.2009.2017169.

Nonparametric Multiscale Blind Estimation of Intensity-Frequency-Dependent Noise /M. Colom, M. Lebrun, A. Buades, J. Morel// IEEE Transactions on Image Processing.  2015.  Vol. 24.  P. 3162-3175,  doi: 10.1109/TIP.2015.2438537.

Dellepiane, S. Quality assessment of despeckled SAR images /S. Dellepiane, E. Angiati// In proceeding of the 2011 IEEE International Geoscience and Remote Sensing Symposium 2011.  24-29 July 2011.  Vancouver, BC, Canada.  P. 3803-3806.  doi: 10.1109/IGARSS.2011.6050059.

Blind Prediction of Original Image Quality for Sentinel Sar Data /O. Rubel, A. Rubel, V. Lukin, M. Carli, K. Egiazarian// In proceeding of the 2019 8th European Workshop on Visual Information Processing (EUVIP).  28-31 Oct. 2019.  Roma, Italy.  P. 105-110.  doi: 10.1109/EUVIP47703. 2019.8946231.

Wang, P. Generating high quality visible images from SAR images using CNNs /P. Wang, V. Patel// In Proceeding of the IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA.  23–27 April 2018.  P. 570–575.  doi:10.1109/ RADAR.2018.8378622.

Analysis of classification accuracy for pre-filtered multichannel remote sensing data /V. Lukin, S. Abramov, S. Krivenko, A. Kurekin, O. Pogrebnyak// J. Expert Syst. Appl.  2013.  Vol. 40.  P. 6400–6411.  doi: 10.1016/j.eswa.2013.05.061.

Congalton, R.G. Assessing the accuracy of remotely sensed data: principles and practices /R.G. Congalton, K. Green// Mapping science series; Lewis Publications: Boca Raton.  1999.  ISBN 978-0-87371-986-5.

Image enhancement and performance evaluation using various filters for IRS-P6 Satellite Liss IV remotely sensed data /T.G. Kumar, D. Murugan, K. Rajalakshmi, T.I. Manish// Geofizika 2015.  P. 179–189.  doi:10.15233/ gfz.2015.32.11.

A Method for the Evaluation of Image Quality According to the Recognition Effectiveness of Objects in the Optical Remote Sensing Image Using Machine Learning Algorithm /T. Yuan, X. Zheng, X. Hu, W. Zhou, W. Wang// PLoS ONE.  2014.  Vol.  9.  e86528 p.  doi: 10.1371/ journal.pone.0086528.

Image Quality Assessment: From Error Visibility to Structural Similarity /Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli// IEEE Transactions on Image Processing.  2004.  Vol. 13.  P. 600-612.  doi: 10.1109/ TIP.2003.819861.

Lin, W. Perceptual visual quality metrics: A survey /W. Lin, C.C. Jay Kuo// J. Vis. Commun. Image Represent.  2011.  Vol. 22.  P. 297–312.  doi: https://doi.org/ 10.1016/j.jvcir.2011.01.005.

Chandler, D. M. Seven Challenges in Image Quality Assessment: Past, Present, and Future Research /D. M. Chandler.  ISRN Signal Processing.  2013.  Vol. 2013.  P. 1-53.

Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment /S. Bosse, D. Maniry, K. Muller, T. Wiegand, W. Samek// IEEE Transactions on Image Processing.  2018.  Vol. 27.  P. 206-219.  doi: 10.1109/ TIP.2017.2760518.

European Space Agency. Earth Online. Available online: https://earth.esa.int/documents/653194/656796/Speckle_Filtering.pdf (accessed on 10 March 2021).

Lee, J. A review of polarimetric SAR speckle filtering / J. Lee, T. Ainsworth, Y. Wang// In proceeding of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).  Fort Worth, TX, USA.  23-28 July 2017.  P. 5303-5306.  doi: 10.1109/IGARSS.2017.8128201.

Milanfar, P. A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical /P. Milanfar.  IEEE Signal Processing Magazine.  2013.  Vol. 30.  P. 106-128.  doi: 10.1109/MSP. 2011.2179329.

On potential to improve DCT-based denoising with local threshold /A. Zemliachenko, V. Lukin, I. Djurovic, B. Vozel// In proceeding of the 2018 7th Mediterranean Conference on Embedded Computing (MECO).  10-14 June 2018.  Budva, Montenegro.  P. 1-4.  doi: 10.1109/MECO. 2018.8406055.

Prediction of performance of 2D DCT-based filter and adaptive selection of its parameters /S. Abramov, V. Lukin, O. Rubel, K. Egiazarian// In proceeding of the Electronic Imaging 2020.  Jan. 2020.  Burlingame, USA.  P. 319-1-319-7.  doi: 10.2352/ISSN.2470-1173.2020.9.IQSP-319.

Is Texture Denoising Efficiency Predictable? /O. Rubel, S. Abramov, V. Lukin, K. Egiazarian, B. Vozel, A. Pogrebnyak// Int. J. Pattern Recognit. Artif. Intell.  2018.  Vol. 32.  1860005 p.  doi:10.1142/ S0218001418600054.

Prediction of Lee filter performance for Sentinel-1 SAR images /O. Rubel, V. Lukin, A. Rubel, K. Egiazarian// In proceeding of the Electronic Imaging 2020.  Burlingame, California, USA, Jan. 2020, pp. 371-1-371-7, doi: 10.2352/ISSN.2470-1173.2020.9.IQSP-371.

Despeckling of Multitemporal Sentinel SAR Images and Its Impact on Agricultural Area Classification /V. Lukin, O. Rubel, R. Kozhemiakin, S. Abramov, A. Shelestov, M. Lavreniuk, M. Meretsky, B. Vozel, K. Chehdi// Recent Advances and Applications in Remote Sensing.  2018.  doi: 10.5772/intechopen.72577.

Blind Estimation of Speckle Characteristics for Sentinel Polarimetric Radar Images /V. Abramova, S. Abramov, V. Lukin, K. Egiazarian// In Proceeding of the IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS).  29–31 August 2017.  Kiev, Ukraine.  P. 263–266.  doi:10.1109/ MRRS.2017.8075078.

On between-coefficient contrast masking of DCT basis functions /N. Ponomarenko, F. Silvestri, K. Egiazarian, M. Carli, J. Astola, V. Lukin// In Proceeding of the Third International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM).  25–26 January 2007.  Scottsdale, AZ, USA.  4 p.

FSIM: A feature similarity index for image quality assessment / L. Zhang, L. Zhang, X. Mou, D. Zhang// IEEE Trans. Image Process.  2011. Vol. 20.  P. 2378–2386.  doi:10.1109/TIP.2011.2109730.

Analysis of HVS-Metrics’ Properties Using Color Image Database TID2013 /V. Lukin, N. Ponomarenko, K. Egiazarian, J. Astola// Proceedings of ACIVS.  October 2015.  Italy.  P. 613-624.

Cameron, C. An R-squared measure of goodness of fit for some common nonlinear regression models /C. Cameron, A. Windmeijer// J. Econom.  1997.  Vol. 77.  P. 329–342.  doi:10.1016/S0304-4076(96)01818-0.

Lossy compression of images without visible distortions and its applications /V. Lukin, M. Zriakhov, S. Krivenko, N. Ponomarenko, Z. Miao// in Proceedings of ICSP.  2010.  Bei-jing.  P. 694-697.

A two-step approach to providing a desired quality of lossy compressed images /D. Demchenko, I. Dyogtev, S. Krivenko, V. Lukin// Proceedings of ICTM.  2020.  Kharkov, Ukraine.  P. 482-491.

Image lossy compression providing a required visual quality /N. Ponomarenko, A. Zemliachenko, V. Lukin, K. Egiazarian, J. Astola// in CD-ROM Proc. of the Seventh In-ternational VPQM Workshop.  2013.  6 p.

Li, F. Analysis of two-step approach for compressing texture images with desired quality /F. Li, S.S. Krivenko, V.V. Lukin// Авиационно-космическая техника и технология. – 2020. – № 1 (161). – С. 50-58.

DCT Based High Quality Image Compression /N. N. Ponomarenko, V. V. Lukin, K. Egiazarian, J. Astola// in Proceedings of 14th Scandinavian Conference on Image Analysis.  2005.  Vol. 14.  P. 1177-1185.

Salomon, D. Handbook of data compression /D. Salomon, G. Motta// Springer, London; New York.  2010.

Blanes, I. A tutorial on image compression for optical space imaging systems /I. Blanes, E. Magli, J. Serra-Sagrista// IEEE Geoscience Remote Sensing Magazine.  2014.  Vol. 2, No. 3.  P. 8-26.

Christophe, E. Hyperspectral data compression tradeoff /E. Christophe.  Optical remote sensing.  2011.  Springer, Cham.  P. 9-29.

Impact of Near-Lossless Compression of IASI L1C data on Statistical Retrieval of Atmospheric Profiles /J. García-Sobrino, I. Blanes, V. Laparra, G. Camps-Valls, J. Serra-Sagristà// In Proceedings of the 4th On-Board Payload Data Compression Workshop (OBPDC).  2014.  Venice, Italy.

Kharchenko, V. Concepts of green IT engineering: taxonomy, principles and implementation /V. Kharchenko, O. Illiashenko// Green IT Engineering: Concepts, Models, Complex Systems Architectures.  2017.  Springer, Cham.  P. 3-19.

Pearlman, W.A. Digital signal compression: principles and practice /W.A. Pearlman, A. Said// Cambridge university press.  2011.

Sayood, K. Introduction to data compression / K. Sayood.  Morgan Kaufmann.  2017.  San Francisco.

Yu, G. Image compression systems on board satellites /G. Yu, T. Vladimirova, M.N. Sweeting// Acta Astronautica.  2009.  Vol. 64, No. 9-10.  P. 988-1005.

Lossy Compression of Multichannel Remote Sensing Images with Quality Control /V. Lukin, I. Vasilyeva, S. Krivenko, F. Li, S. Abramov, O. Rubel, B. Vozel, K. Chehdi, K. Egiazarian// Remote Sensing.  2020.  Vol. 12, No. 22.  3840 p.

Krivenko, S. Smart lossy compression of images based on distortion prediction /S. Krivenko, O. Krylova, E. Bataeva, V. Lukin// Telecommunications Radio Engineering.  2018.  Vol. 77, No. 17.

Ponomarenko, N. DCT Based High Quality Image Compression. /N. Ponomarenko, V. Lukin, K. Egiazarian, J. Astola// Lecture Notes in Computer Science; Springer Berlin Heidelberg.  2005.  Berlin, Heidelberg.  Vol. 3540.  P. 1177–1185.  ISBN 978-3-540-26320-3.

Classification of Compressed Multichannel Images and Its Improvement /G. Proskura, I. Vasilyeva, L. Fangfang, V. Lukin// In: 2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA).  2020.  IEEE Piscataway.  P. 1-6.

Zabala, A. Impact of lossy compression on mapping crop areas from remote sensing /A. Zabala, X. Pons// International Journal of Remote Sensing.  2013.  Vol. 34, No. 8. P. 2796-2813.

Improved statistically based retrievals via spatial-spectral data compression for IASI data /J. Garcia-Sobrino, V. Laparra, J. Serra-Sagristà, X. Calbet, G. Camps-Vall// IEEE Transactions on Geoscience Remote Sensing.  2019.  Vol. 57, No. 8.  P. 5651-5668.

Lossy compression of three-channel remote sensing images with controllable quality /I. Vasilyeva, F. Li, S. Abramov, V. V Lukin, B. Vozel, K. Chehdi// Proceedings of Image and Signal Processing for Remote Sensing XXVII.  2021.  Vol. 11862.  P. 199-210.

Lossy compression of hyperspectral images based on noise parameters estimation and variance stabilizing transform /A.N. Zemliachenko, R.A. Kozhemiakin, M.L. Uss, S.K. Abramov, N.N. Ponomarenko, V.V. Lukin, B. Vozel, K. Chehdi/ Journal of applied remote sensing.  2014.  Vol. 8, No. 1.  083571 p.

Transform coding techniques for lossy hyperspectral data compression /B. Penna, T. Tillo, E. Magli, G. Olmo// IEEE Transactions on Geoscience Remote Sensing.  2007.  Vol. 45, No. 5.  P. 1408-1421.

Remote Sensing Image Compression based on direction lifting-based block transform with content-driven Quadtree coding adaptively /C. Shi, L.,Wang, J. Zhang, F. Miao, P. He// Remote Sensing.  2018.  Vol. 10, No. 7.  999 p.

Ozah, N. Compression improves image classification accuracy /N. Ozah, A. Kolokolova// In: Canadian Conference on Artificial Intelligence.  2019.  Springer, Heidelberg.  P. 525-530.

Dua, Y. Comprehensive review of hyperspectral image compression algorithms /Y. Dua, V. Kumar, R.S. Singh// Optical Engineering.  2020.  Vol. 59, No. 9.  090902 p.

Dusselaar, R. Hyperspectral image compression approaches: opportunities, challenges, and future directions: discussion /R. Dusselaar, M. Paul// JOSA.  2017.  Vol. A 34, No. 12.  P. 2170-2180.

Manolakis, D. On the spectral correlation structure of hyperspectral imaging data /D. Manolakis, R. Lockwood, T. Cooley// In: IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium.  2008.  IEEE, Piscataway.  P. II-581-II-584.

Khelifi, F. Joined spectral trees for scalable SPIHT-based multispectral image compression /F. Khelifi, A. Bouridane, F. Kurugollu// IEEE Transactions on Multimedia.  2008.  Vol. 10, No. 3.  P. 316-329.

Aiazzi, B. Near-lossless compression of 3-D optical data /B. Aiazzi, L. Alparone, S. Baronti// IEEE Transactions on Geoscience Remote Sensing.  2001.  Vol. 39, No. 11.  P. 2547-2557.

Rubel, O. An improved prediction of DCT-based image filters efficiency using regression analysis /O. Rubel, V. Lukin// Information and Telecommunication Sciences.  2014.  Vol. 5, No. 1.  12 p.

Parresol, B.R. Recovering parameters of Johnson's SB distribution /Parresol, B.R.:  US Department of Agriculture, Forest Service, Southern Research Station.  2003.

Lukin, V. Discrete Atomic Compression of Digital Images: A Way to Reduce Memory Expenses /V. Lukin, I. Brysina, V. Makarichev// Integrated Computer Technologies in Mechanical Engineering. Advances in Intelligent Systems and Computing 1113.  2020.  Springer, Cham.  P. 492-502.  https://doi.org/ 10.1007/978-3-030-37618-5_42.

Discrete atomic compression of satellite images: a comprehensive efficiency research /V.O. Makarichev, V.V. Lukin, I.V. Brysina, B. Vozel, K. Chehdi// Proceedings of Image and Signal Processing for Remote Sensing XXVII.  2021.  Vol. 11862.  P. 185-198.

Atomic wavelets in lossy and near-lossless image compression //V. Makarichev, V. Lukin, I. Brysina, B. Vozel, K. Chehdi// Proc. SPIE 11533, Image and Signal Processing for Remote Sensing XXVI.  2020.  Vol. 11533.  DOI: https:// doi.org/10.1117/12.2573970.

Published

2023-03-30

How to Cite

Benoit, V., Rubel, A., Rubel, O., Vasilyeva, I., Uss, M., Proskura, G., & Lukin, V. (2023). PROCESSING OF MULTICHANNEL REMOTE SENSING DATA USING NEURAL NETWORKS. European Science, 3(sge18-03), 85–130. https://doi.org/10.30890/2709-2313.2023-18-03-002

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.