MATHEMATICAL MODELING OF CRITICAL PHENOMENA ACCORDING TО THE PLEBIANSKY-DEMYANSKY METRIC

Authors

DOI:

https://doi.org/10.30890/2709-2313.2023-22-01-023

Keywords:

mathematical modeling, phase transitions, phase coexistence, critical phenomena

Abstract

Based on the generalization of the theory of Landau phase transitions and the provisions of Thom's theory of catastrophes, the fulfillment of the conditions of stability, singularity, and the emergence of phase coexistence spaces for the family of solut

Metrics

Metrics Loading ...

References

Plebanski J.F., Demianski M. Rotating, Charged, and Uniformly Accelerating Mass in General Relativity / Ann. Phys. (NY), 1976, V. 98, P. 98-127.

Shapovalov, G.V. 16-th Odessa Int. Astr. Gamow Conf.-School , 2016, P. 12.

Shapovlov H. Matematical modeling of critical phenomena according to the Plebiansky-Demyansky metric / Shapovlov H., Kazakov A., Oleynyk V., Zorilo V. // Technologies, Innovative And Modern Theories Of Scientists. – Proceedings of the XX International Scientific and Practical Conference. – Graz, Austria. – May 23 – 26, 2023, P. 434 – 438

Cahn, J. On spinodal decomposition / J.Cahn // Acta Met. — 1961. — Vol. 9. — P. 795 — 801.

Okada, K. Classical calculations on the phase transition I. Phase diagram in four-dimensional space for the system with one order parameter / K. Okada, I. Suzuki // J. Phys. Soc. Jap. — 1982. — Vol. 51, № 10. — P. 3250 — 3257.

Laugier, A. Thermodynamics and phase diagram calculations in II-VI and IV-VI ternary systems using an associated solution model / A. Laugier // Revue De Physique Applique. — 1973. — Vol. 8, № 9 — P. 259–26.

Kazakov, A. Computer simulation for stability of quaternary solid solutions / A. Kazakov, I.Kishmar // J. Crystal Growth. — 1991. — Vol. 110. — P. 803 — 814.

Kazakov, A. Stability analysis of quaternary alloys including the lattice mismatch strain energy / А.Kazakov, I. Kishmar // J. Crystal Growth. — 1992. — Vol. 125. — P. 509 — 518.

Kazakov, A. Calculation of the phases coexistence spaces in the system Hg-Mn-Te-Se [Текст] / A. Kazakov, D. Burtnyi, G. Shapovalov // Proceedings of Odessa Polytechnic University. ― 2018. ― Т. 54, № 1. ― С. 69 ― 73.

Kazakov, A.I. Computer simulation for formation of critical spaces in II–VI solid solutions / A.I.Kazakov, G.V.Shapovalov, P.P.Moskvin // Journal of Crystal Growth. ― 2019. ― V. 506 ― P. 201 ― 205.

Moskvin, P. P. Spinodal decomposition and composition modulation effect at the lowtemperature synthesis of semiconductor solid solutions / Pavel P. Moskvin, Sergii I. Skurativskyi, Oleksandr P. Kravchenko, Galyna V. Skyba, Hennadii V. Shapovalov // Journal of Crystal Growth. ― 2019. ― V. 510 ― P. 40 ― 46.

Shapovalov, G.V. Computer simulation for formation of critical spaces in II–VI solid solutions / A.I.Kazakov, G.V.Shapovalov, P.P.Moskvin // Journal of Crystal Growth. ― 2019. ― V. 506 ― P. 201 ― 205

http://maxima.sourceforge.net

Traat, I. Matrix calculus for multivariate distributions / I.Traat // State University of Tartu — 1986. — V.733. — P. 64 — 85.

Chang T. S. Generalized Scaling Hypothesis in Multicomponent Systems. I. Classification of Critical Points by Order and Scaling at Tricritical Points / T. S. Chang, Alex Hankey, and H. Eugene Stanley / Phys. Rev. – 1973 – B 8. – Р. 346.

Published

2023-09-30

How to Cite

Kazakov, A., Shapovlov, H., & Oleynyk, V. (2023). MATHEMATICAL MODELING OF CRITICAL PHENOMENA ACCORDING TО THE PLEBIANSKY-DEMYANSKY METRIC. European Science, 1(sge22-01), 123–130. https://doi.org/10.30890/2709-2313.2023-22-01-023