THERMOSTABILITY OF PDC: FACTORS AFFECTING THERMOSTABILITY AND WAYS TO IMPROVE IT
DOI:
https://doi.org/10.30890/2709-2313.2024-30-00-012Keywords:
Diamond polycrystalline compact, thermal stability, leaching, silicon impregnation, catalyst-free diamond polycrystalsAbstract
Polycrystalline diamond, with its high hardness and wear resistance as well as other excellent properties such as low friction, high thermal conductivity, high corrosion resistance and low electrical conductivity, plays a leading role in the selection ofMetrics
References
Zhan G. (David), J. Xu, He D. (2023). Applications of Polycrystalline Diamond (PCD) Materials in Oil and Gas Industry in Applications and Use of Diamond. IntechOpen, Jul. 26, 2023. DOI: 10.5772/intechopen.107355.
Stasiuk L. F., Melnyk M. P., Bondarenko N. A., et al. (2006). Termostoikie ATP i rezultaty ikh primeneniia v burovykh instrumentakh ISM [Heat-resistant ATPs and results of their application in ISM drilling tools] in Porodorazrushaiushchii i metalloobrabatyvaiushchii instrument – tekhnika i tekhnologiia ego izgotovleniia i primeneniia [Rock Destruction and MetalWorking Tools – Techniques and Technology of the Tool Production and Applications], issue 9, pp. 25–30.
Sneddon M.V., Hall D.R. (1988). Polycrystalline Diamond: Manufacture, Wear Mechanisms, and Implications for Bit Design in Journal of Petroleum Technology, issue 12, pp. 1593–1601.
Bondarenko N.A., Osypov A.S., Mechnyk V.A., et al. (2007). Burovoi instrument, osnashchennyi termostoikimi rezhushchimi vstavkami ATP [Drilling tools equipped with ATP heat-resistant cutting inserts] in Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch [Exploration and development of oil and gas fields], issue 4, pp. 14–18.
Liu C., Kou Z., He D., et al. (2012). Effect of removing internal residual metallic phases on wear resistance of polycrystalline diamond compacts in Int. Journal of Refractory Metals and Hard Materials, issue 31, pp. 187–191. DOI: 10.1016/j.ijrmhm.2011.10.014.
Yahiaoui M., Gerbaud L., Paris J.-Y., et al. (2013). A study on PDC drill bits quality in Wear, issue 298–299, pp. 32–41.
Gu J., Huang K. (2016). Role of cobalt of polycrystalline diamond compact (PDC) in drilling process in Diamond & Related Materials, vol. 66, pp. 98–101. DOI: 10.1016/j.diamond.2016.03.025.
Ni P., Chen Y., Yang W., et al. (2023). Research on Microstructure, Synthesis Mechanisms, and Residual Stress Evolution of Polycrystalline Diamond Compacts in Crystals, vol. 13,1286. DOI: 10.3390/cryst13081286.
Lei L., Wangyue W., Jie L., et al. (2023). Sun Fuhua Study on cobalt removal process of PDC. by pressurized chemical precipitation method in Diamond & Related Materials, vol. 139, 110368. DOI: 10.1016/j.diamond.2023.110368.
Bovenkerk H.P., Gigl P.D. (1980). Patent 4224380 USA. Int. Cl. C22C 3/00; B24D 3/00. Temperature resistant abrasive compact and method for making same.
Leaching (chemistry). Wikipedia. https://en.wikipedia.org/wiki/Leaching_(chemistry).
Gou R., Luo X., Long S., et al. (2021). Improvement of ambient temperature tribological properties of polycrystalline diamond compact treated by cobalt removal in Diamond & Related Materials, vol. 119, 108567. DOI: 10.1016/j.diamond.2021.108567.
Plemons B., Douglas C., Shen Y., et al. (2010). New Cutter Technology for Faster Drilling in Hard/Abrasive Formations in Proceedings of the International Oil and Gas Conference and Exhibition in China, Beijing, China, June 2010. Paper Number: SPE-132143-MS. DOI: 10.2118/132143-MS.
Clegg J. (2006). Faster, Longer, and More-Reliable Bit Runs With New-Generation PDC Cutter. In SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, September 2006. Paper Number: SPE-102067-MS. DOI: 10.2118/102067-MS.
Tonkov Ye. Yu. (1979). Fazovye diahrammy elementov pri vysokom davlenii [Phase diagrams of elements at high pressure].
Nozhkina A. V., Shulzhenko A. A., Gargin V. G., Bochechka A. A. (2000).The formation of a diamond layer on a carbide substrate during diamond interaction with Si, WC and Co. in High Pressure Research: An International Journal, vol.18, issue 1, pp. 325–330. DOI: 10.1080/08957950008200987.
Liu S., Han L., Zou Y., et al. (2017). Polycrystalline diamond compact with enhanced thermal stability in Journal of Materials Science & Technology, vol. 33, issue 11 pp. 1386–1391. DOI: 10.1016/j.jmst.2017.03.014.
Qian J., Voronin G., Zerda T.W., et al. (2002). High-pressure, high-temperature sintering of diamond–SiC composites by ball-milled diamond–Si mixtures in J. Mater. Res., vol. 17, issue 8 pp. 2153–2160.
Ishii T., Yamazaki D., Tsujino N., et al. (2017). Pressure generation to 65 GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils in High Pressure Research: An International Journal, vol. 37, issue 4, pp. 507–515. DOI: 10.1080/08957959.2017.1375491.
Irifune, T., Kurio, A., Sakamoto, S., et al. (2003). Ultrahard polycrystalline diamond from graphite in Nature, vol. 421, issue 6923 pp. 599–600. DOI: 10.1038/421599b.
Liu J., Zhan G., Wang Q., et al. (2018). Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure in Applied physics letters, vol. 112, 061901. DOI: 10.1063/1.5016110.
Li Q., Zhan G., Li D.,et al. (2020). Ultrastrong catalyst‑free polycrystalline diamond in Scientific Reports, issue 10, 22020. DOI: 10.1038/s41598-020-79167-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.