ВЕНТИЛЬНО-ІНДУКТОРНІ ДВИГУНИ. ПРОЕКТУВАННЯ, МОДЕЛЮВАННЯ, КЕРУВАННЯ. ВЕНТИЛЬНО-ИНДУКТОРНЫЕ ДВИГАТЕЛИ. ПРОЕКТИРОВАНИЕ, МОДЕЛИРОВАНИЕ, УПРАВЛЕНИЕ

Авторы

DOI:

https://doi.org/10.30890/2709-2313.2021-07-08-017

Ключевые слова:

switched reluctance motor, design, simulation, control

Аннотация

switched reluctance motor. design, simulation, control

Метрики

Загрузка метрик ...

Библиографические ссылки

Trends and developments in electric vehicle markets – Global EV Outlook 2021 – Analysis – IEA. Available online at https://www.iea.org/reports/global-ev-outlook-2021/trends-and-developments-in-electric-vehicle-markets.

Nuca, I., Todos, P., & Eşanu, V. Urban electric vehicles traction: Achievements and trends. In 2012 International Conference and Exposition on Electrical and Power Engineering, 2012, pp. 76-81. IEEE. doi:10.1109/icepe.2012.6463948.

Bitar, Z., & Al Jabi, S. Studying the performances of induction motor used in electric car. Energy Procedia, 2014, 50, 342-351. Available online at https://www.sciencedirect.com/science/article/pii/S1876610214007772.

Wang, B., Liu, Y., Vakil, G., Yang, T., & Zhang, Z. Feasibility of Permanent Magnet Fault Tolerant Machines for Aircraft Starter/Generator Systems. In 2020 International Conference on Electrical Machines (ICEM), 2020, Vol. 1, pp. 2104-2110. IEEE. doi:10.1109/icem49940.2020.9270965.

Jape, S. R., & Thosar, A. Comparison of electric motors for electric vehicle application. international Journal of Research in Engineering and Technology, 2017 6(09), 12-17. Available online at https://ijret.org/volumes/2017v06/i09/IJRET20170609004.pdf.

Vijayakumar, K., Karthikeyan, R., Paramasivam, S., Arumugam, R., & Srinivas, K. N. Switched Reluctance Motor Modeling, Design, Simulation, and Analysis: A Comprehensive Review. IEEE Transactions on Magnetics, 2008, 44(12), pp. 4605–4617. doi:10.1109/tmag.2008.2003334.

Tang, Y. U.S. Patent No. 8,761,985. Washington, DC: U.S. Patent and Trademark Office, 2014. Available online at https://patents.google.com/patent/US20130241445A1/en.

Shibamoto, T., Nakamura, K., Goto, H., & Ichinokura, O. A design of axial-gap switched reluctance motor for in-wheel direct-drive EV. In 2012 XXth International Conference on Electrical Machines, 2012, pp. 1160-1165.

Hu, Y., Gan, C., Cao, W., & Finney, S. Fault Diagnosis of Switched Reluctance Motors in Electrified Vehicle Applications. In New Applications of Electric Drives. IntechOpen, 2015. Available online at https://www.intechopen.com/books/new-applications-of-electric-drives/fault-diagnosis-of-switched-reluctance-motors-in-electrified-vehicle-applications.

Lukianov, M.O., Verbytskyi, Ye.V. Design and control features of switched-reluctance motor with minimization torque pulsation. Microsystems, Electronics and Acoustics, № 25(1), pp. 20-26 (Ukr). doi: 10.20535/2523-4455.mea.198991.

Neiman, L.A. & Neiman, V.Yu. (). Application of the conductivity method to account for the force of one-sided magnet-ic attraction of an asymmetric electromagnet. Proceedings of Irkutsk State Technical University, 2015, №2(97), pp. 214-218 (Rus).

Ding, W., Liu, G., & Li, P. A Hybrid Control Strategy of Hybrid-Excitation Switched Reluctance Motor for Torque Ripple Reduction and Constant Power Extension. IEEE Transactions on Industrial Electronics, 2019, 1–1. doi:10.1109/tie.2019.2891467.

Kabir, M. A., & Husain, I. Segmented rotor design of concentrated wound switched reluctance motor (SRM) for torque ripple minimization. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016. doi:10.1109/ecce.2016.7855420.

Lee, D.-H., Pham, T. H., & Ahn, J.-W. Design and Operation Characteristics of Four-Two Pole High-Speed SRM for Torque Ripple Reduction. IEEE Transactions on Industrial Electronics, 2013, 60(9), 3637–3643. doi:10.1109/tie.2012.2208432.

Liaw, C.-M., Hu, K.-W., Wang, J.-C., & Ho, C. Y. Development and Operation Control of a Switched-Reluctance Motor Driven Flywheel. IEEE Transactions on Power Electronics, 2018, 1–1. doi:10.1109/tpel.2018.2814790.

Deng, X., & Mecrow, B. Design and comparative evaluation of converter topologies for six-phase switched reluctance motor drives. The Journal of Engineering, 2019 (17), pp. 4017–4021. doi:10.1049/joe.2018.8031.

Hu, Y., Wang, T., & Ding, W. Performance evaluation on a novel power converter with minimum number of switches for a six-phase switched reluctance motor. IEEE Transactions on Industrial Electronics, 2018, 1–1. doi:10.1109/tie.2018.2840480.

Ellabban, O., & Abu-Rub, H. Switched reluctance motor converter topologies: A review. 2014 IEEE International Conference on Industrial Technology (ICIT), pp. 840-846. doi:10.1109/icit.2014.6895009.

Deng, X., Mecrow, B., Gadoue, S., & Martin, R. A torque ripple minimization method for six-phase switched reluctance motor drives. 2016 XXII International Conference on Electrical Machines (ICEM), 2016. doi:10.1109/icelmach.2016.7732641.

Xue, X. D., Cheng, K. W. E., & Ho, S. L. Optimization and Evaluation of Torque-Sharing Functions for Torque Ripple Minimization in Switched Reluctance Motor Drives. IEEE Transactions on Power Electronics, 2009, 24(9), 2076–2090. doi:10.1109/tpel.2009.2019581.

Liu, H., Loh, P. C., Wang, X., Yang, Y., Wang, W., & Xu, D. Droop Control With Improved Disturbance Adaption for a PV System With Two Power Conversion Stages. IEEE Transactions on Industrial Electronics, 2016, 63(10), pp. 6073–6085. doi:10.1109/tie.2016.2580525.

Denisov, Y., Gorodny, A., Gordienko, V., Yershov, R., Stepenko, S., Kostyrieva, O., & Prokhorova, A. Switch operation power losses of quasi-resonant pulse converter with parallel resonant circuit. 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO), 2016. doi:10.1109/elnano.2016.7493078.

Ievgen Verbytskyi, Oleksandr Bondarenko, Dmitri Vinnikov. Multicell-type current regulator based on Cuk converter for resistance welding. 2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, 2017, Pp. 1 – 6. doi:10.1109/RTUCON.2017.8124844.

Galkin, I.; Blinov, A.; Verbytskyi, I.; Zinchenko, D. Modular Self-Balancing Battery Charger Concept for Cost-Effective Power-Assist Wheelchairs. Energies 2019, 12, 1526. doi: 10.3390/en12081526.

Опубликован

2021-12-30

Как цитировать

Бондаренко, Ю., & Вербицкий, Е. (2021). ВЕНТИЛЬНО-ІНДУКТОРНІ ДВИГУНИ. ПРОЕКТУВАННЯ, МОДЕЛЮВАННЯ, КЕРУВАННЯ. ВЕНТИЛЬНО-ИНДУКТОРНЫЕ ДВИГАТЕЛИ. ПРОЕКТИРОВАНИЕ, МОДЕЛИРОВАНИЕ, УПРАВЛЕНИЕ. European Science, 8(sge07-08), 129–154. https://doi.org/10.30890/2709-2313.2021-07-08-017