THE METHODOLOGY OF SYNTHESIS OF INFORMATION TECHNOLOGY FOR STRUCTURING OF ROUGH DATA AND EXPERT KNOWLEDGE

Authors

DOI:

https://doi.org/10.30890/2709-2313.2023-25-00-001

Keywords:

theory of rough set, rough data, expert knowledge, the knowledge base, classification, information technology

Abstract

he task of structuring of rough data and expert knowledge has been formulated. For the analysis of inaccurate (rough) data and expert information, the mathematical apparatus of the theory of rough sets was used, which allows processing large arrays of uno

Metrics

Metrics Loading ...

References

Attribute selection with fuzzy decision reducts (2010)/ Cornelis C., Jensen R., Hurtado G., Sle D., et al. Information Sciences, vol. 180(2), pp. 209–224.

Bazan J. G. (1998) A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. Rough Sets in Knowledge Discovery, vol. 1, pp. 321–365.

Bello R., Puris A., Falcon R., Gomez Y. (2008) Feature selection through dynamic mesh optimization. In: Ruiz-Shulcloper J., Kropatsch W. (Eds.) Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes in Computer Science. Berlin / Heidelberg: Springer, vol. 5197, pp. 348–355.

Gomez Y., Bello R., Puris A., Garcia M. M., Nowe A. (2008) Two step swarm intelligence to solve the feature selection problem. Journal of Universal Computer Science, vol. 14, no. 15, pp. 2582–2596.

Grzymala-Busse J. W., Goodwin L. K. (1997) Predicting preterm birth risk using machine learning from data with missing values. Bull of the International Rough Set Society, vol. 1, pp. 17–21.

Hu Q., Xie Z., Yu D. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation (2007). Pattern Recognition, vol. 40, no. 12, pp. 3509–3521.

Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “roughsets” (2014) / L. S. Riza, et al. Information Sciences, vol. 287, pp. 68–89.

Janusz A., Slezak D. (2014) Rough set methods for attribute clustering and selection. Applied Artificial Intelligence, vol. 28, no. 3, pp. 220–242.

Jensen R., Shen Q. (2003) Finding rough set reducts with ant colony optimization. In: Computational Intelligence (UKCI-2003): proceedings of the 2003 UK Workshop (Bristol, UK, September 1st–3rd, 2003). Bristol, vol. 1, pp. 15–22.

Jensen R., Shen Q. (2004) Fuzzy–rough attribute reduction with application to web categorization. Fuzzy Sets and Systems, vol. 141, no. 3, pp. 469–485.

Jun Z., Zhou Y. (2009) New heuristic method for data discretization based on rough set theory. The Journal of China Universities of Posts and Telecommunications, vol. 16, no. 6, pp. 113–120.

Lenarcik A., Piasta Z. (1992) Discretization of condition attributes space. In: Slowinski R. (Ed.) Intelligent Decision Support--Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: Kluwar Academic Publishrs, pp. 373-389.

Li M., Shang C., Feng S., Fan J. (2014) Quick attribute reduction in inconsistent decision tables. Information Sciences, vol. 254, pp. 155–180.

Min F., Hu Q., Zhu W. (2014) Feature selection with test cost constraint. International Journal of Approximate Reasoning, vol. 55, no. 1, pp. 167–179.

Narinyani A. S. (1999) NE-faktory: netochnost i nedoopredelennost – razlichiya i vzaimosvyaz [Un-factors: inaccuracy and underdetermination – differences and relationships]. In: Computational Linguistics and Intellectual Technologies (Dialogue’99): proceedings of the 1999 Annual International Conference (Tarusa, May 31st–June 4th, 1999). Vol. 2, pp. 207–210.

Pawlak Z. (2001) Rough sets, theoretical aspects of reasoning about data. Boston: Kluwer Academic Publishers, 229 p. ISBN 0792314727

Pawlak Z (1982) Rough sets. International Journal of Computer & Information Sciences, vol. 11(5), pp. 341–356. doi: 10.1007/BF01001956

Pawlak Z. (1983) Rough classification. International Journal of Man-Machine Studies, vol. 20(5), pp. 469–483. doi: 10.1016/S0020-7373(84)80022-X

Shen Q., Chouchoulas A. (2000) A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems. Engineering Applications of Artificial Intelligence, vol. 13(3), pp. 263–278.

Slezak D. (2002) Approximate entropy reducts. Fundamenta informaticae, vol. 53(3-4), pp. 365–390.

Su C. T., Hsu J. H. (2005) An extended chi2 algorithm for discretization of real value attributes. IEEE Transactions on Knowledge and Data Engineering, vol. 17(3), pp. 437–441.

Swiniarski R. W. (2001) Rough sets methods in feature reduction and classification. International Journal of Applied Mathematics and Computer Science, vol. 11(3), pp. 565–582.

Uzhga-Rebrov O. I. (2010) Upravlenie neopredelennostyami. Sovremennyie neveroyatnostnyie metodyi [Uncertainty management. Modern non-probabilistic methods]. Part 3. Rezekne: RA Izdevnieciba. 560 p. ISBN 978-9984-44-041-5

Wroblewski J. (2001) Ensembles of classifiers based on approximate reducts. Fundamenta Informaticae, vol. 47(3-4), pp. 351–360.

Wroblewski J. (1996) Theoretical foundations of order-based genetic algorithms. Fundamenta Informaticae, vol. 28(3-4), pp. 423–430.

Xie H., Cheng H. Z., Niu D. X. (2005) Discretization of continuous attributes in rough set theory based on information entropy. Chinese Journal of Computers, vol. 28(9), pp. 1570-1574.

Zhong N., Dong J., Ohsuga S. (2001) Using rough sets with heuristics for feature selection. Journal of Intelligent Information Systems, vol. 16(3), pp. 199–214. doi: 10.1023/A:1011219601502.

Published

2023-12-30

How to Cite

Shved, A. (2023). THE METHODOLOGY OF SYNTHESIS OF INFORMATION TECHNOLOGY FOR STRUCTURING OF ROUGH DATA AND EXPERT KNOWLEDGE. European Science, 1(sge25-01), 171–182. https://doi.org/10.30890/2709-2313.2023-25-00-001