FUNDAMENTALS OF PIEZORESONANT CAPACITANCE-CONTROLLED MECHANOTRONIC TRANSDUCERS: DESIGN AND CONSTRUCTION
DOI:
https://doi.org/10.30890/2709-2313.2024-29-00-029Keywords:
0Metrics
References
E. EerNisse, R. Wiggins, "Review of Thickness-Shear Mode Quartz Resonator Sensors for Temperature and Pressure," IEEE sensors journal", June 2001.
E. EerNisse, "Quartz resonators vs their environment: Time base or sensor," The Japan society of applied Physics, 2001.
J. Gagnipain, R. Besson, Nonlinear Effects in Piezoelectric Quartz / Crystals. Phys. Acoust., Vol. 2, New York. – 1975. – pp. 245-288.
Umapathy, M., Uma, G., Suresh, K. (2014). Electronic Circuits for Piezoelectric Resonant Sensors. In: Vinoy, K., Ananthasuresh, G., Pratap, R., Krupanidhi, S. (eds) Micro and Smart Devices and Systems. Springer Tracts in Mechanical Engineering. Springer, New Delhi. doi: 10.1007/978-81-322-1913-2_26
T. Pham, B. Zhang, S. Yenuganti, S. Kaluvan, J. Kosinski, “Design, Modeling, and Experiment of a Piezoelectric Pressure Sensor Based on a Thickness-Shear Mode Crystal Resonator” / IEEE Transactions on Industrial Electronics: IEEE, Nov. 2017, Vol. 64, Issue 11, рр. 8484 - 8491.
C. Barthod, "New force sensor based on a double ended tuning fork," in Proc. IEEE Int. Frequency Control Symp., pp. 74-78, 2000.
Z. Wang, H. Zhu, Y. Dong, G. Feng, "A thickness -Shear Quartz Resonator Force Sensor With Dual-Mode Temperature Compensation," IEEE Sensors Journal, vol.3, no.4, August 2003.
Z. Wang, H. Zhu, Y. Dong and G. Feng, "Development of a High-Resolution Quartz Resonator Force and Weight Sensor With Increased Reliability", IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 2, June 2004 pp. 399-407.
Ratajski J. M., "The force sensitivity of AT-cut quartz crystals" // 20th Annu. Symp. Freq. Contr. –1966. – pp. 33-48.
Ratajski J. M. "Forced-frequency coefficient of singly-rotated vibrating quartz crystals", IBM J. Res. Dev., vol. 12, pp. 92-96, 1968.
EcrNissc E. P., "Calculations of the stress compensated (SC-cut) quartz resonator," in Proc. 30th Annu. Freq. Contr. Symp., pp. 8-11, 1976.
Колпаков Ф. Ф. Теорія і реалізаційні основи інваріантних п'єзорезонансних коливальних систем: монографія / Ф. Ф. Колпаков, С. К. Підченко. – Харків: Нац. аерокосм. ун-т ім. М.Є. Жуковського "Харк. авіац. ін-т". – 2011. – 326 с.
Patent US 3561832 USA, Int. Pat. Class. H01V 7/00. Quartz resonator pressure transduser / H. Karrer, P. Alto, J. Leach. Applicant: Hewlett-Packard Company, Palo Alto, Calif. Filed: Dec. 5, 1969, № 882501; Pub. Date: Feb. 9, 1971.
Patent US 4754646 USA, Int. Pat. Class. G01L 11/00. Resonator pressure transduser structure and method of manufacture/ E. EerNisse, R. Ward. Applicant: Quartztronics, Inc., Salt Lake City, Utah. Filed: Jan. 30, 1987, № 9144; Pub. Date: Jul. 5, 1988.
Patent US 5221873 USA, Int. Pat. Class. H01L 41/08. Pressure transducer with quartz crystal of singly rotated cut for increased pressure and temperature operating range/ E. EerNisse, R. Ward. Applicant: Quartztronics, Inc., Salt Lake City, Utah. Filed: Jan. 30, 1987, № 9144; Pub. Date: Jul. 5, 1988.
Erhart, J., Půlpán, P., Pustka, M. (2017). Applications of Piezoelectric Resonators. In: Piezoelectric Ceramic Resonators. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. doi: 10.1007/978-3-319-42481-1_4
J.-J. Gagnepain, Resonators, Detectors, and Piezoelectrics, Editor(s): Peter W. Hawkes, Advances in Electronics and Electron Physics, Academic Press, Volume 77, 1990, Pages 83-137, ISSN 0065-2539, ISBN 9780120146772, doi: 10.1016/S0065-2539(08)60588-0.
J. Kusters, M. Fischer, and J. Leach, Dual mode operation or temperature and stress compensated crystals," in Proc. 32nd Annu. Freq. Contr. Symp., 1978,
pp. 389-397.
I. V. Abramson, "Two-mode quartz resonators for digital temperature compensated quartz oscillators," in Proc. 46th Annu. Freq. Contr. Symp., pp. 442-447.
A. Kosykh, I. Abramson, and V. Begaev, "Dual mode oscillators with resonators excited on B and C modes," in Proc. 1994 IEEE Int. Freq. Contr. Symp., 1994, pp. 578-586.
R. Besson. J. Boy. B. Gloiin, Y. Jinzaki, B. Sinha, and M. Valdois, "A dual-mode thickness-shear quartz pressure sensor." IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 40, pp. 584-591, 1993.
N. Matsumoio, Y. Sudo, B. Sinha, and M. Niwa, "Long-term stability and performance characteristics of crystal quartz gauge at high pressures and temperatures," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, pp. 346-354, 2000.
N. Matsumoto, Y. Oohashi, M. Miyashita, G. Fujisawa, B. Sinha, and M. Niwa, "Development of a quartz pressure sensor for extreme hostile environment applications", in Proc. 2000 EFTF, Turin, Italy, 2000.
Lawrence D. Clayton and Errol P. EerNisse, "Quartz Thickness-Shear Mode Pressure Sensor Design for Enhanced Sensitivity", IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, no. 5, Sept. 1998, pp.1196-1203.
Patent WO 2009/004429 Al, Int. Pat. Class. G01L 9/00, H03H 9/00. Pressure transduser/ N. Matsumoto (JP), T. Yamate (JP), B. Sixha (US), S. Sato (JP), A. Veneruso (US), J. Lawrence (US), Y. Barriol (US), S. Daito (US). Applicant: Schlumberger Holdings Limited, Craigmuir Cham¬bers, Road Town, Tortola (VG). Filed: Jul. 2, 2007, № 11/772244; Pub. Date: Jan. 8, 2009.
B.K. Sinha, "Stress Compensated Orientations for Thickness-Shear Quartz Resonators," Proceedings of the 35th Annual Symposium on Frequency Control, (U.S. Army Electronics Research and Development Command, Fort Monmouth, New Jersey), pp. 213-221, 1981.
M. Valdois, B.K.. Sinha, and J-J. Boy, "Experimental Verification of Stress Compensation in the SBTC-cut," 1988 Ultrasonics Symposium Proceedings, IEEE, New York, pp. 347-352, 1988.
Mihir S. Patel, Bikash K. Sinha, "A Dual-Mode Thickness-Shear Quartz Pressure Sensor for High Pressure Applications", Published 2018 in IEEE Sensors Journal, pp. 1-8.
S. Pidchenko, A. Taranchuk, “Synthesis of quartz measuring transducers with low Q – Factor sensor element” 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, UKraine, 2017, pp. 489-494. doi: 10.1109/ELNANO.2017.7939801.
A. Taranchuk, S. Pidchenko and O. Skovryha, “The pressure transducer based on the dual-mode piezoresonant sensors with modulated interelectrode gap”, 2016 IEEE 36th International Conference on Electronics and
Nanotechnology (ELNANO), Kyiv, UKraine, 2016, pp. 261-263. doi: 10.1109/ELNANO.2016.7493062.
Z. Wang et al., “High sensitivity, wearable, piezoresistive pressure sensors based on irregular microhump structures and its applications in body motion sensing,” Small, vol. 12, no. 28, pp. 3827–3836, Jul. 2016. doi:10.1002/smll.201601419.
A. A. Taranchuk, S. K. Pidchenko, and R. P. Khoptinskiy, “Dynamics of temperature-frequency processes in multifrequency crystal oscillators with digital compensations of resonator performance instability”, 2015, Radioelectron. Commun. Syst. vol. 58, pp. 250–257.
Пат. №44108 А Україна / Датчик тиску/ Колпаков Ф. Ф., Підченко С. К., Доброва В.Є., Акулинічєв А.А., Таранчук А.А.; Заявник і патентоутримувач Технологічний університет Поділля. – № 2001053030; заявл. 04.05.01; опубл. 15.01.02, Бюл. № 1. – 10 с.: іл.
Пат. №59936 А Україна / Датчик тиску// Колпаков Ф.Ф., Підченко С.К., Акулинічєв А.А., Таранчук А.А.; Заявник і патентоутримувач Технологічний університет Поділля. – № 2002129829; заявл. 04.05.01; опубл. 15.09.03, Бюл. № 9. –7 с.: іл.
J. R. Vig, A. Ballato, 4 Frequency control devices, Editor(s): R.N. Thurston, Allan D. Pierce, Emmanuel P. Papadakis, Physical Acoustics, Academic Press, Volume 24, 1999, Pages 209-273, ISSN 0893-388X, ISBN 9780124779457, doi: 10.1016/S0893-388X(99)80026-8.
V. K. Varadan, K. J. Vinoy, K. A. Jose. RF MEMS and Their Applications. England: John Wiley & Sons, Ltd., 2003. – 394 p.
G. M. Rebeiz. RF MEMS. Theory, Design, and Technology. USA: John Wiley & Sons, Ltd., 2003. – 512 p.
D. J. Young, B. E. Boser, "A Micromachined Variable Capaciior For Monolithic Low-Noise VCOs," Solid-State Sensor and Actuator Workshop, Dig. Tech. Papers, pp. 86-89, June 1996.
J. Zou, C. Liu, J. Schutt-Aine, J. Chen, and S.-M. Kang, “Development of a wide tuning range MEMS tunable capacitor for wireless communication systems,” in Proc. IEDM, Dec. 10–13, 2000, pp. 403–406.
D. J. Young, B. E. Boser, "A Micromachine-Based RF Low-Noise Voltage-Controlled Oscillator", Proceedings of CICC 97 – Custom Integrated Circuits Conference, 5-8 May 1997, pp. 431-434.
D. J. Young, B. E. Boser, V. Malba, A. F. Bernhardt, «A micromachined RF low noise voltage controlled oscillator for wireless communications», International Journal of RF and Microwave CAE, 2001, pp. 285-300.
A. Dec and K. Suyama “Micromachined Electro-mechanically Tunable Capacitors and their Applications to RF IC’s”, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, 1998.
D. A. Koester, R. Mahadevan, A. Shishkoff, and K. W. Markus, “SmartMUMP’s design handbook including MUMP’s introduction and design rules,” MEMS Technology Applications Center, July 1996, pp. 1–8.
K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE, vol. 70, pp. 420–457, May 1982.
R. Legtenberg, A. C. Tilmans, J. Elders, and M. Elwenspoek, “Stiction of surface micromachined structures after rinsing and drying: Model and investigation of adhesion mechanisms,” Sensors and Actuators A: Physical. 1994, No. 43, pp. 230-238.
C. W. Dyck, J. H. Smith, S. L. Miller, E. M. Russick, and C. L. Adkins, “Supercritical carbon dioxide solvent extraction from surface micromachined micromechanical structures,” Proc. SPIE, pp. 225–235, Oct. 1996.
Z. Xiao, W. Peng, R.F. Wolffenbuttel, K.R. Farmer, "Micromachined variable capacitors with wide tuning range," Sensors and Actuators A: Physical. 2003, No. 104, pp. 299-305.
“What is QMEMS?”, Сайт компанії Seiko Epson Corp. Режим доступу: https://www5.epsondevice.com/en/information/technical_info/qmems/
J. Liang, J. Huang, T. Zhang, J. Zhang, X. Li and T. Ueda, "An Experimental Study on Fabricating an Inverted Mesa-Type Quartz Crystal Resonator Using a Cheap Wet Etching Process," Sensors, 2013, Vol. 13, pp. 12140-12148.
Abe T., Hung V., Esashi M. “Inverted mesa-type quartz crystal resonators fabricated by deep-reactive ion etching”. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, vol. 53, рр. 1234-1236.
Fraga M., Pessoa R., Massi M., Maciel H. Applications of SiC-Based Thin Films in Electronic and MEMS Devices. In book: Physics and Technology of Silicon Carbide Devices, Publisher: Intech, Rijeka, October 2012, pp.313-336.
F. Yong, Q. Cherng, J.-S. Luo, J. Desmulliez, M. Li, Y. Walton, et al. Aluminium nitride thin film acoustic wave device for microfluidic and biosensing applications. In book: Acoustic Waves. Publisher: InTech, Rijeka, 2010, pp. 263-298. ISBN 9789533071114.
Ruby R., Jose S. Review and Comparison of Bulk Acoustic Wave FBAR, SMR Technology // IEEE Ultrasonics Symposium Proceedings, 26 December 2007, pp. 1029-1040.
P K Joshi et al 2022 J. Phys.: Conf. Ser. 2273 012010. doi 10.1088/1742-6596/2273/1/012010.
Підченко С. К. Теорія і реалізаційні основи інваріантних багаточастотних п’єзорезонансних пристроїв та систем / С. К. Підченко. – Хмельницький: ХНУ, 2014. – 400 с.
Piezoelectric Sensors (Springer Series on Chemical Sensors and Biosensors Book 5). Volume editors: Claudia Steinem, Andreas Janshoff; with contributions by M.A. Cooper ... [et al.]. Springer: Berlin, New York, 2006, 483 p.
A. Arnau1, J. García1, Y. Jimenez, V. Ferrari and M. Ferrari. Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions. Review of Scientific Instruments 79, 31 July 2008.
Torres R.; Arnau A.; Perrot H.; García J.; Grabielli C. "Analog-Digital Phase-Locked Loop for alternating current quartz electrogravimetry". Electronics Letters 2006, Vol. 42, pp. 1272-1273.
Rodahl M.; Kasemo B. "A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance". Review of Scientific Instruments. 1996, 67, pp. 3238-3241.
Rodahl M., Kasemo B. "Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode". Sensors and Actuators. 1996,
Vol. 37, pp. 111-116.
Rodahl M., Hook F., Kasemo B. "QCM operation in liquids: An explanation of measured variations in frequency and Q factor with liquid conductivity". Analytical Chemistry. 1996, Vol. 68, pp. 2219-2227.
Хуторненко С.В. Математична модель п’єзорезонансного пристрою в засобах автоматизації механотронних систем / С.В. Хуторненко, Д.А. Семенець // Наукові праці Донецького національного технічного університету. Серія гірничо-електромеханічна – Донецьк : ДонНТУ, 2011. – №21(189). – С. 159 – 167.
Патент UA 57121 Україна МПК8 Н03Н 9/00. П'єзоелектричний резонатор з керуванням частоти / [С.В. Хуторненко, В.М. Савченко, Д.А. Семенець та ін.]. - № u201009357; заявл. 26.07.2010; опубл. 10.02.2011, Бюл. 3.
Gregory V. Ionis, Aleksander Dec, Ken Suyama. “A Zipper-Action Differential Micro-Mechanical Tunable Capacitor”, MEMS Conference 2001, August 24–26, Berkeley, USA, pp. 29-32.
Amro M Elshurafa and Ezz I El-Masry. “MEMS variable capacitance devices utilizing the substrate: II. Zipping varactors”. Journal of Micromechanics and Microengineering, 2010, Vol. 20, № 4, pp. 1-7.
J.-B. Yoon and C. T.-C. Nguyen, “A high-Q tunable micromechanical capacitor with movable dielectric for RF applications,” Technical Digest, IEEE Int. Electron Devices Meeting, San Francisco, California, Dec. 11-13, 2000, pp. 489-492.
Таранчук А. А. П’єзорезонансні пристрої зі скороченим часом встановлення теплового режиму резонатора: 05.12.13 – радіотехнічні пристрої та засоби телекомунікацій. Харків, 2006. 232 с.
Стецюк В.І. Покращення віброчастотної стабільності автогенераторних п’єзорезонансних пристроїв в режимі багаточастотного збудження кварцового резонатора: 05.12.13 – радіотехнічні пристрої та засоби телекомунікацій. Хмельницький, 2012. 232 с.
Z. Wang, H. Zhu, Y. Dong and G. Feng, “Development of a High-Resolution Quartz Resonator Force and Weight Sensor With Increased Reliability,” IEEE/ASME Transactions on Mechatronics 2004, Vol. 9, Issue: 2, pp. 399-406.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.