DESIGN AND MODELLING OF A CHAOTIC TRANSCEIVER FOR FREQUENCY OUTPUT QUARTZ TRANSDUCERS
DOI:
https://doi.org/10.30890/2709-2313.2024-29-00-032Keywords:
0Metrics
References
EerNisse, E. P., Wiggins, R. B. Review of Thickness-Shear Mode Quartz Resonator Sensors for Temperature and Pressure, 2001. IEEE Sensors
Journal, vol. 1, no. 1, pp. 79-87. DOI: 10.1109/JSEN.2001.923590.
Huang, Q., Neubig, B., Wu, Z., Xie., L., Ma, T., Gan, N., Wang, J. Analysis of Vibrations of Circular Quartz Crystal Resonators for Sensor Applications. IEEE International Ultrasonics Symposium (IUS), 2020, pp. 1-3, DOI: 10.1109/IUS46767.2020.9251694.
Pidchenko, S., Taranchuk, A. Synthesis of quartz measuring transducers with low Q-Factor sensor element. IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), 2017, pp. 489-494, DOI: 10.1109/ELNANO.2017.7939801.
Taranchuk, A., Pidchenko, S. Quartz pulse wave sensor with a capacitive control for healthcare solutions. IEEE Sensors Journal, 2021, vol. 21, no. 6, pp. 8613-8620. DOI: 10.1109/JSEN.2020.3049065.
Pidchenko, S., Taranchuk, A., Slobodian, M., Durda, R. Invariant Two-frequency Quartz Oscillators Based on Dual-loop Automatic Frequency Control Systems. IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2020, pp. 781-785. DOI: 10.1109/TCSET49122.2020.235541.
Pidchenko, S., Taranchuk, A., Yanenko, A. The efficiency of combining the stabilization and measurement functions of a quartz multi-frequency oscillation system. International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), 2017, pp. 1-5. DOI: 10.1109/UkrMiCo.2017.8095370.
Taranchuk, A. Construction of measuring piezoresonance mechanotrons and their practical implementation for telemedicine diagnostic systems. Telecommunications and Radio Engineering, 2018, vol. 77, no. 3, pp. 269-281. DOI: 10.1615/TelecomRadEng.v77.i3.80.
Strielkina, A. Information technology for dependability assessment and providing of healthcare IoT systems. Radioelectronic and Computer Systems, 2019, no. 3, pp. 48-54. DOI: 10.32620/reks.2019.3.05.
Lorenz, E.N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 1963, vol. 20, no. 2, pp. 130-141. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Rössler, O.E. An equation for continuous chaos. Physics Letters A, 1976, vol. 57, no. 5, pp. 397-398. DOI: 10.1016/0375-9601(76)90101-8.
Rössler, O.E. An equation for hyperchaos. Physics Letters A, 1979, vol. 71, no. 2-3, pp. 155-157. DOI: 10.1016/0375-9601(79)90150-6.
Chen, G., Ueta, T. Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 1999, vol. 9, no. 7, pp. 1465-1466. DOI: 10.1142/S0218127499001024.
Penkin, Yu., Khara, G., Fedoseeva, A. Modeling of vibrational processes in discrete matrix structures approach. Radioelectronic and Computer Systems, 2020, no. 2, pp. 67-79. DOI: 10.32620/reks.2020.2.06.
Katok, A., Hasselblatt, B. Introduction to the modern theory of dynamical systems. Encyclopedia of mathematics and its applications. Cambridge University Press, 1995, 824 p. DOI: 10.1017/CBO9780511809187.
Chen, G., Lai, D. Feedback anticontrol of discrete chaos. International Journal of Bifurcation and Chaos, 1998, vol. 8, no. 7, pp. 1585-1590. DOI: 10.1142/S0218127498001236.
Wang, X.F., Chen, G. On feedback anticontrol of discrete chaos. International Journal of Bifurcation and Chaos, 1999, vol. 9, no. 7, pp. 1435-1441. DOI: 10.1142/S0218127499000985.
Ueta, T., Chen, G. Bifurcation analysis of Chen’s equation. International Journal of Bifurcation and Chaos, 1999, vol. 10, no. 8, pp. 1917-1931. DOI: 10.1142/S0218127400001183.
Pidchenko, S., Taranchuk, A., Slobodian, M., Gavronskiy, V. Pseudo-phase Space Reconstruction of Pulse Wave Biomedical Signals. IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), 2021, pp. 168-171. DOI: 10.1109/UkrMiCo52950.2021.9716669.
Ku, Y.H., Sun, X. Chaos in Van der Pol's equation. Journal of the Franklin Institute, 1990, vol. 327, no. 2, pp. 197-207. DOI: 10.1016/0016-0032(90)90016-C.
Matsumoto, T. A chaotic attractor from Chua's circuit. IEEE Transactions on Circuits and Systems, 1984, vol. 31, no. 12, pp. 1055-1058. DOI: 10.1109/TCS.1984.1085459.
Matsumoto, T., Chua, L., Komuro, M. The double scroll. IEEE Transactions on Circuits and Systems, 1985, vol. 32, no. 8, pp. 797-818. DOI: 10.1109/TCS.1985.1085791.
Kennedy, M.P. Chaos in the Colpitts Oscillator. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 1994, vol. 41, no., 11, pp.771-774. DOI: 10.1109/81.331536.
Semenov, A., Osadchuk, O., Semenova, O., Baraban, S., Voznyak, O., Rudyk, A., Koval, K. Research of Dynamic Processes in the Deterministic Chaos Oscillator Based on the Colpitts Scheme and Optimization of Its Self-oscillatory System Parameters. Data-Centric Business and Applications. Lecture Notes on Data Engineering and Communications Technologies, 2021, vol. 48, Springer, Cham, pp. 181-205. DOI: 10.1007/978-3-030-43070-2_10.
Peter, K. Chaos in Hartley’s Oscillator. International Journal of Bifurcation and Chaos, 2002, vol. 12, no. 10, pp. 2229-2232. DOI: 10.1142/S0218127402005777.
Volos, Ch.K. Chaotic random bit generator realized with a microcontroller. Journal of Comput. & Modelling, 2013, vol. 3, no. 4, pp. 115-136.
Chiu, R., Mora-Gonzaleza, M., Lopez-Mancilla, D. Implementation of a chaotic oscillator into a simple microcontroller. International Conference on Electronic Engineering and Computer Science, 2013, vol. 4, pp. 247-252. DOI: 10.1016/j.ieri.2013.11.035.
Das, A. K., Mandal, M. K. FPGA based chaotic cryptosystem. 2nd Int. Conf. Adv. Comput. Commun. Paradig. ICACCP, 2019, no. 5, pp. 1-6. DOI: 10.1109/icaccp.2019.8882909.
Blakely, J.N., Eskridge, M.B., Corron, N.J. A simple Lorenz circuit and its radio frequency implementation. Chaos Interdiscipl. J. Nonlinear Sci., 2007, vol. 17, no. 2, 023112-4. DOI: 10.1063/1.2723641.
Wu, J., Li, Ch., Ma, X., Lei, T., Chen, G. Simplification of chaotic circuits with quadratic nonlinearity. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, vol. 69, no. 3, pp. 1837-1841. DOI: 10.1109/tcsii.2021.3125680.
Pecora, L.M., Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett., 1990, vol. 64, no. 8, pp. 821-824. DOI: 10.1103/physrevlett.64.821.
Pecora, L.M., Carroll, T. L. Driving system switch chaotic signals. Phys. Rev. A., 1991, vol. 44, no. 4, pp.2374-2383. DOI: 10.1103/PhysRevA.44.2374.
Golevych, O., Pyvovar, O., Dumenko, P. Synchronization of non-linear dynamic systems under the conditions of noise action in the channel. Latvian Journal of Physics and Technical Sciences, 2018, vol. 5, no. 3, pp. 70-76. DOI: 10.2478/lpts-2018-0023.
Liao, T.-L., Lin, Sh.-H. Adaptive control and synchronization of Lorenz systems. Journal of the Franklin Institute, 1999, vol. 336, no. 6, pp. 925-937. DOI: 10.1016/S0016-0032(99)00010-1.
Sheu, L.-J., Chen, H.-K., Chen, J.-H., Tam, L.-M., Chen, W.-Ch., Lao, S-K., Lin, K.-T. Complete synchronization of two Chen-Lee systems. Journal of Physics Conference Series, February 2008. DOI: 10.1088/1742-6596/96/1/012138.
Eroglua, D., Lambb, J.S.W., Pereira, T. Synchronization of chaos and its applications. Contemporary Physics, 2017, vol. 58, no. 3, pp. 207-243. DOI: 10.1080/00107514.2017.1345844.
Ouannas, A., Karouma, A., Grassi, G., Pham, V.-Th., Luong, V.S. A novel secure communications scheme based on chaotic modulation, recursive encryption and chaotic masking. Alexandria Engineering Journal, 2021, vol. 60, no. 1, pp. 1873-1884. DOI: 10.1016/j.aej.2020.11.035.
Pyvovar, O. S., Polikarovskykh, O. I. A System of Secure Communication with Chaos Masking Based on Rucklidge Generators. IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), 2018, pp. 638-642, DOI: 10.1109/ELNANO.2018.8477566.
Hasler, M. Synchronization of chaotic systems and transmission of information. International Journal of Bifurcation and Chaos, 1998, vol. 8, no. 4 pp. 647-659. DOI: 10.1142/S0218127498000450.
Wawrzyński, T. Artificial intelligence and cyberculture. Radioelectronic and Computer Systems, 2020, no. 3, pp. 48-54. DOI: 10.32620/reks.2020.3.02.
Sheela, S., Sathyanarayana, S.V. Application of chaos theory in data security-a survey. ACCENTS Transactions on Information Security, 2016, vol. 2, no. 5, pp. 1-15. DOI: 10.19101/tis.2017.25001.
Kostenko, P. Yu., Slobodyanuk, V. V., Vysotskiy, O. V., Lebedev, V. O., Totsky, A. V. Technique providing improving the secretiveness of chaotic signals transmitted over radio channel. Telecommunications and Radio Engineering,
, vol. 80, no. 12, pp. 25-43. DOI: 10.1615/TelecomRadEng.2022038530.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.