COMPLEX FORMATION IN SOLUTIONS
DOI:
https://doi.org/10.30890/2709-2313.2024-30-00-002Keywords:
Complex formation, Vibrational spectroscopy, Multivariate curve resolution, Quantum cluster equilibriumAbstract
Methanol-chloroform solutions with different mixing ratios were studied using vibrational (ATR FTIR and Raman) spectroscopy. Obtained spectra were analyzed by different techniques such as excess spectroscopy and multivariate curve resolution. Analysis ofMetrics
References
B.E.Poling, J.M.Prausnitz, J.P.O’Connell. The properties of gases and liquids, McGraw-Hill (2001), https://doi.org/10.1036/0070116822.
M.Homocianu, A.Airinei. Investigations of absorption and emission spectral data in mixed liquid media. A short review of recent literature, J. Mol. Liq. 209 (2015) 549–556.
C.Breil, M.Abert Vian, T.Zemb, W.Kunz, F.Chemat. ‘Bligh and dyer’ and folch methods for solid-liquid-liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents, Int. J. Mol. Sci. 18 (2017) 708.
S.Gupta, P.Mukherjee, B.Sengupta, P.Sen. Dynamical response in methanol–chloroform binary solvent mixture over fs–ls time regime, Phys. Chem. Liquids 56 (2018) 496–507.
S.Gupta, S.Rafiq, P.Sen. Dynamics of solvent response in methanol - chloroform binary solvent mixture: a case of synergistic solvation, J. Phys. Chem. B 119 (2015) 3135–3141.
S.Gupta, S.Rafiq, M.Kundu, P.Sen. Origin of strong synergism in weakly perturbed binary solvent system: a case study of primary alcohols and chlorinated methanes, J. Phys. Chem. B 116 (2012) 1345–1355.
R.M.Naessems, R.A.Clará, A.C.G.Marigliano. Density, viscosity, excess molar volume and viscosity deviation for [chloroform (1)+methanol (3)] binary system and [chloroform (1)+di-isopropylether (2)+methanol (3)] ternary system at 298.15K, Chem. Data Collections 7–8 (2017) 68–79.
M.Lj.Kijevcˇanin, M.M.Djuriš, I.R.Radovic´, B.D.Djordjevic´, S.P.Šerbanovic´. Volumetric properties of the binary methanol + chloroform and ternary methanol + chloroform + benzene mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K, J. Chem. Eng. Data 52, 1136–1140 (2007).
I.Nagata. Isobaric vapor-liquid equilibria for the ternary system chloroformmethanol- ethyl acetate, J. Chem. Eng. Data 7 (1962) 367–373.
I.Nagata, K.Tamura. Thermodynamics of solutions of methanol and solvating components, Thermochim. Acta 57 (1982) 331–349.
S.Dixit, J.Crain, W.C.K.Poon, J.L.Finney, A.K.Soper. Molecular segregation observed in a concentrated alcohol? water solution, Nature 416 (2002) 829–832.
I.Jukic´, M.Pozˇar, B.Lovrincˇevic´, A.Perera. Lifetime distribution of clusters in binary mixtures involving hydrogen bonding liquids, Sci. Rep. 12 (2022) 9120.
M.Pozˇar. The microscopic structure of cold aqueous methanol mixtures, J. Chem. Phys. 145 (2016) 144502.
W.Wrzeszcz, S.Mazurek, R.Szostak, P.Tomza, M.A.Czarnecki. Microheterogeneity in CH3OH/CD3OH mixture, Spectrochim. Acta A Mol Biomol. Spectrosc. 188 (2018) 349–354.
P.Tomza, W.Wrzeszcz, S.Mazurek, R.Szostak, M.A.Czarnecki. Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies, Spectrochim. Acta A Mol. Biomol. Spectrosc. (2018), https://doi.org/10.1016/j.saa.2018.01.068.
W.Wrzeszcz. Microheterogeneity in binary mixtures of methanol with aliphatic alcohols: ATR-IR/NIR spectroscopic, chemometrics and DFT studies, RSC Adv. 6 (2016) 37195–37202.
A.Perera, L.Zoranic´, F.Sokolic´, R.Mazighi. A comparative molecular dynamics study of water–methanol and acetone–methanol mixtures, J. Mol. Liq. 159 (2011) 52–59.
D.Pal, A.Chakraborty, S.Chakraborty. Investigation of [CHCl3-CH3OH] complex using matrix-isolation IR spectroscopy and quantum chemical calculation: Evidence of hydrogen- and halogen-bonding interaction, Chem. Phys. 555 (2022).
J.Harnes. The structure of mixed methanol/chloroform clusters from core-level photoelectron spectroscopy and modeling, New J. Chem. 35 (2011) 2564–2572.
M.Tkadlecova, V.Dohnal, M.Costas. 1H NMR and thermodynamic study of self-association and complex formation equilibria by hydrogen bonding. Methanol with chloroform or halothane, PCCP 1 (1999) 1479–1486.
Y.Han, R.Liu, C.Jiang, H.Wang, X.Zheng. The aggregation structure of a methanol/CHCl3 binary mixture investigated by polarized Raman spectroscopy and HNMR, J. Mol. Liq. 335 (2021) 116224.
M.A.Wendt, J.Meiler, F.Weinhold, T.C.Farrar. Solvent and concentration dependence of the hydroxyl chemical shift of methanol, Mol. Phys. 93 (1998) 145–152.
K.Polok, N.Subba, W.Gadomski, P. Sen. Search for the origin of synergistic solvation in methanol/chloroform mixture using optical Kerr effect spectroscopy, J. Mol. Liq. 345 (2022) 117013.
R.Gratias, H.Kessler. Molecular dynamics study on microheterogeneity and preferential solvation in methanol/chloroform mixtures, J. Phys. Chem. B 102 (1998) 2027–2031.
G.Kamath, G.Georgiev, J.J.Potoff. Molecular modeling of phase behavior and microstructure of acetone-chloroform-methanol binary mixtures, J. Phys. Chem. B 109 (2005) 19463–19473.
A.de Juan, R.Tauler. Multivariate Curve Resolution: 50 years addressing the mixture analysis problem – A review, Anal. Chim. Acta 1145 (2021) 59–78.
B.Kirchner. Theory of complicated liquids: Investigation of liquids, solvents and solvent effects with modern theoretical methods, Phys. Rep. 440 (2007) 1–111.
J.-H.Jiang, Y.Ozaki. Self-modeling curve resolution (SMCR): principles, techniques and application, Appl. Spec. Rev. 37 (2002) 321–345.
S.C.Rutan, A.de Juan, R.Tauler. Introduction to multivariate curve resolution, in: S.D.Brown, R.Tauler, B.Walczak (Eds.), Comprehensive chemometrics: chemical and biochemical data analysis, Elsevier, vol. 2, 249–259, 2009.
A.de Juan, R.Tauler. Chapter 2 - multivariate curve resolution-alternating least squares for spectroscopic data, in: C B.T.-D.H. in S. and T. Ruckebusch (Ed.), Resolving Spectral Mixtures, Elsevier, vol. 30 5–51, 2016.
G.R.Naik, W.W.Editors. Signals and Communication Technology Blind Source Separation Advances in Theory, Algorithms and Applications, 2014.
K.H.Esbensen, P.Geladi. Principal component analysis: concept, geometrical interpretation, mathematical background, algorithms, history, practice, in: S.D Brown, R.Tauler, B.Walczak (Eds.), Comprehensive Chemometrics: Chemical and Biochemical Data Analysis, Elsevier, vol. 2 211–225, 2009.
I.T.Jolliffe, J.Cadima. Principal component analysis: a review and recent developments, 374.
T.G.Mayerhöfer, O.Ilchenko, A.Kutsyk, J.Popp. Beyond beer’s law: quasi-ideal binary liquid mixtures, Appl. Spectrosc. 76 (2022) 92–104.
H.Abdollahi, R.Tauler. Uniqueness and rotation ambiguities in Multivariate Curve Resolution methods, Chemom. Intell. Lab. Syst. 108 (2011) 100–111.
A.Malik, R.Tauler. Chapter 4 - ambiguities in multivariate curve resolution, in: C. B. T.-D. H. in S. and T. Ruckebusch (Ed.), Resolving Spectral Mixtures, Elsevier, vol. 30, 101–133, 2016.
S.Scheiner. Hydrogen bonding a theoretical perspective, 1997.
R.Tauler, A.Smilde, B.Kowalski, Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution, J. Chemom. 9 (1995) 31–58.
R.Tauler. Calculation of maximum and minimum boundaries of feasible solutions for species profiles obtained by multivariate curve resolution, J. Chemom. 15 (2001) 627–646.
J.Jaumot, R.Tauler. MCR-BANDS: A user friendly MATLAB program for the evaluation of rotation ambiguities in Multivariate Curve Resolution, Chemom. Intell. Lab. Syst. 103 (2010) 96–107.
A.C.Olivieri, R.Tauler. The effect of data matrix augmentation and constraints in extended multivariate curve resolution–alternating least squares, J. Chemom. 31 (2017) e2875.
A.de Juan, R.Tauler. Chapter 8 - Data Fusion by Multivariate Curve Resolution, in: M.B.T.-D.H. in S. and T. Cocchi (Ed.), Data Fusion Methodology and Applications, Elsevier, vol. 31, 205–233, 2019.
F.Weinhold. Quantum cluster equilibrium theory of liquids: General theory and computer implementation, J. Chem. Phys. 109 (1998) 367–371.
M.Brüssel, E.Perlt, S.B.C.Lehmann, M.von Domaros, B.Kirchner. Binary systems from quantum cluster equilibrium theory, J. Chem. Phys. 135 (2011) 194113.
B.Kirchner. What can clusters tell us about the bulk?: Peacemaker: Extended quantum cluster equilibrium calculations, Comput. Phys. Commun. 182 (2011) 1428–1446.
M.von Domaros, E.Perlt, J.Ingenmey, G.Marchelli, B.Kirchner. Peacemaker2: Making clusters talk about binary
O. Ilchenko. High-speed line-focus Raman microscopy with spectral decomposition of Spectrosc. 83 (2016).mouse mixtures and neat liquids, SoftwareX 7 (2018) 356–359.skin, Vib.
Y.Zhang, Z.Wu, Y.Wang, H.He, Z.Yu. Excess spectroscopy and its applications in the study of solution chemistry, 92 (2020) 1611–1626.
A.M.Kutsyk, O.O.Ilchenko, Y.M.Yuzvenko, V.V.Obukhovsky, V.V.Nikonova. Vibration spectroscopy of complex formation in aqueous solutions of isopropanol, Ukrainian J. Phys. 63 (2018).
T.Shimanouchi. Tables of Molecular Vibrational Frequencies Consolidated. Volume I., 1972.
A.Kutsyk, O.Ilchenko, Y.Pilgun, V.Obukhovsky, V.Nikonova. Complex formation in liquid diethyl ether-chloroform mixtures examined by 2D correlation MID-IR spectroscopy, J. Mol. Struct. 1124 (2016).
O.O.Ilchenko, V.V.Nikonova, A.M.Kutsyk, V.V.Obukhovsky. Quantitative analysis of complex formation in acetone-chloroform and ethyl acetatecyclohexane solutions, Ukrainian J. Phys. 59 (2014).
J.Jaumot, A.de Juan, R.Tauler. MCR-ALS GUI 2.0: New features and applications, Chemometrics and Intelligent Laboratory Syst. 140 (2015) 1–12.
W.Windig, J.Guilment. Interactive self-modeling mixture analysis, Anal. Chem. 63 (1991) 1425–1432.
R.Manne. On the resolution problem in hyphenated chromatography, Chemom. Intell. Lab. Syst. 27 (1995) 89–94.
M.Akbari, H.Abdollahi. Investigation and visualization of resolution theorems in self modeling curve resolution (SMCR) methods, J. Chemom. 27 (2013) 278–286.
I.Y.Doroshenko. Matrix isolation study of the formation of methanol cluster structures in the spectral region of C-O and O-H stretch vibrations, Low Temp. Phys. 37 (2011) 604–608.
I.Y.Doroshenko, O.I.Lizengevych, V.E.Pogorelov, L.I.Savransky. Associates of methanol molecules: quantum-chemical calculations of structure and vibrational spectra, Ukr. J. Phys. 49 (2004) 540–544.
P.Kalhor, Q.Z.Li, Y.Z.Zheng, Z.W.Yu. Is the Fourier transform infrared free-OH band of t-butanol only from free OHs? Case studies on the binary systems of the alcohol with CCl4and CHCl3, J. Phys. Chem. A 124 (2020) 6177–6185.
B.Kirchner. Cooperative versus dispersion effects: What is more important in an associated liquid such as water?, J. Chem. Phys. 123, 204116(1–13) (2005).
J.Ingenmey, M.von Domaros, B.Kirchner. Predicting miscibility of binary liquids from small cluster QCE calculations, J. Chem. Phys. 146 (2017) 154502.
M.W.Schmidt. General Atomic and Molecular Electronic Structure System, J. Comput. Chem. 14 (1993) 1347–1363.
M.S.Gordon, M.W.Schmidt. Advances in electronic structure theory: GAMESS a decade later, in: C.E.Dykstra, G.Frenking, K.S.Kim & G.E.Scuseria (Eds.), Theory and Applications of Computational Chemistry: the first forty years, Elsevier, 2005, doi:10.1016/B978-044451719-7/50084-6, 1167–1189.
K.Biradha, M.Fujita. Encapsulation of Two Types of Chloroform Dimers in the Cavities of a Coordination Polymer, Chem. Lett. 29 (2000) 350–351.
C.-C.Yin, A.-H.-T.Li, S.D.Chao. Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential, J. Chem. Phys. 139 (2013) 194501.
Chloroform-Methanol Vapor-Liquid Equilibrium: Datasheet from ‘Dortmund Data Bank (DDB) – Thermophysical Properties Edition 2014’ in SpringerMaterials (https://materials.springer.com/thermophysical/docs/ vle_c47c110). Preprint at https://materials.springer.com/ thermophysical/docs/vle_c47c110.
A.van der Bondi, Waals Volumes and Radii, J. Phys. Chem. 68 (1964) 441–451.
G.Matisz, A.-M.Kelterer, W.M.F.Fabian, S.Kunsági-Máté. Application of the Quantum Cluster Equilibrium (QCE) Model for the Liquid Phase of Primary Alcohols Using B3LYP and B3LYP-D DFT Methods, J. Phys. Chem. B 115 (2011) 3936–3941.
S.L.Boyd, R.J.Boyd. A Density Functional Study of Methanol Clusters, J. Chem. Theor. Comp. 3 (2007) 54–61.
A.Apelblat. The concept of associated solutions in historical development. Part 1. The 1884–1984 period, J. Mol. Liq. 128 (2006) 1–31.
P.P.Singh, B.R.Sharma, K.S.Sidhu. Thermodynamics of chloroform and methanol mixtures, Can. J. Chem. 57 (1979) 387–393.
I.Nagata, K.Tamura. Excess enthalpies of binary and ternary mixtures of methanol with acetone, chloroform, benzene and tetrachloromethane, Fluid Phase Equilib. 15 (1983) 67–79.
V.A.Durov, O.G.Tereshin, I.Y.Shilov. Supramolecular structure and physicochemical properties of the trichloromethane–methanol mixtures, J. Mol. Liq. 121 (2005) 127–138.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.