EVALUATION OF CORROSION RESISTANCE OF ZINK ELECTROPLATED COATINGS
DOI:
https://doi.org/10.30890/2709-2313.2024-32-00-040Keywords:
galvanic coating, conversion coating, corrosion resistance, polarization resistanceAbstract
Prompt determination of the corrosion resistance of galvanic coatings in various technological environments is important in the field of chemical technology, in particular for improving various coating properties and economic performance of their productMetrics
References
Thomas F. Fuller, John N. Harb. (2018). Electrochemical engineering. Hoboken , NJ. USA: Wiley. 436 p.
2. Yu. M. Loshkarev, V.S. Kovalenko. (1994) Еlektrolytycheskoe tsynkovanye [Electrolytic galvanizing]. Monograph. - Dnipropetrovsk: Publishing House of DSU, 224. ISSN 5-86400-233-X.
ISO 2081. Metallic and other inorganic coatings – electroplated coatings of zinc with supplementary treatments on iron or steel. Geneva, Switzerland: International Organization for Standardization. [To replace ISO 2081:2008; valid from 2018-02] View. officer.UK: BSI,2018. 11 p.
4 DSTU 4042:2004. Kripylni vyroby. Pokryttia elektrolitychni. [Fastening products. Electrolytic coatings] [To replace ISO 9227:2017; valid from 2022-11] View. Officer UK: BSI,2004. 233 p.
ISO 9227: 2022. Corrosion test in artificial atmospheres – Salt spray tests.[ To replace ISO 9227:2017; valid from 2022-11] View. Officer. UK: BSI,2022. 233 p.
ISO 4628-2:2016. Paint sand varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 2: Assessment of degree of blistering [To replace ISO 4628-2:2003; valid from 2016-01] View. Officer UK: BSI,2016].
ASTM G3-14(2019) Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing.
ASTM G59-97(2003) Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements.
ASTM G102-89(1999) Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements.
. M. G. Fontana , R. W. Staehle (Eds.). (1980). Advances in Corrosion Science and Technology, Vol. 7., Plenum Press, New York, London., 365 p.
Yu. S. Gerasimenko, M. V. Nechai, N. A. Belousova. (1999). Сorrosion – protective properties of zinc coatings. Materials Science, 35 (2), 273-277.
12. M.S. Khoma, A.V. Zaluzhetsʹ, O.M. Koltun, O.V.Volʹvatenko. Koroziyna tryvkistʹ haryachykh tsynkovykh pokryttiv na osnovi tsynku ta alyuminiyu [Corrosion resistance of hot-dip galvanised zinc and aluminium coatings] Lviv Polytechnic National University Institutional Repository. http://ena.lp.edu.ua
Nina Bilousova, Kateryna Holodna. (2022). Expressing method of assessment of the corrosion protection properties of galvanic coatings. VIII International scientific and practical conference «Science, trends and development methods» Abstracts of VIII International Scientific and Practical Conference Tokyo, Japan (December 19 – 21, 2022). 42 – 46. ISBN – 978-9-40365-672-4. https://eu-conf.com/ua/events/science-trends-and-development-methods/?utm_source=eSputnik-promo&utm_medium=email&utm_campaign=EU-CONF-Sbornik_materialov_konferencii_opublikovan&utm_content=878380151
Unified system of corrosion and ageing protection. Corrosion inhibitors of metals for water systems. Electrochemical method of protective ability evaluation. GOST 9.514 – 99 (introduced 2002) - PK Publishing House of Standards, 2001- 19 p.
Y. Zou, J. Wang, Y.Y. Zheng. (2011). Electrochemical techniques for determining corrosion rate of rusted steel in seawater. Corrosion Science, 53, 208–216. doi:10.1016/j.corsci.2010.09.011.
M. Birdeanu, I. Sebarchievici, A.V. Birdeanu, B. Ţaranu, F. Peter, E. Fagadar-Cosma. (2015). Synthesis, characterization and potential application of Zn3(Ta1-xNbx)2O8 oxides. Journal of Nanomaterials and Biostructures, 10(2), 543 – 555.
S Khorsand, K Raeissi, M A Golozar. (2012). Electrochemical aspects of deposition and characterisation of zinc coating produced in presence of 1,2-diaminopropane in sulphate bath. The International Journal of Surface Engineering and Coatings. 90(3), 149-155.
D. Vasilakopoulos, M. Bouroushian, N. Spyrellis. (2001). Texture and Morphology of Zinc Electrodeposited from an Acid Sulphate Bath. The International Journal of Surface Engineering and Coatings. 79 (3), 107-110. doi: 10.1080/00202967.2001.11871375
Vlasenko T. M., Kriukova O. A. (2019). Prohresyvni elektrolity tsynkuvannia [Advanced galvahnising electrolytes]. Tekhnolohii ta dyzain [Technology and design]. 1(30), 1-5. https://er.knutd.edu.ua/bitstream/123456789/12725/1/td_2019_N1_16.pdf.;
Ulyh H. H., Revy R. U. (1989). Korrozyia y borba s nei. Vvedenye v korrozyonnuiu nauku y tekhnyku. [Corrosion and Corrosion Control. An Introduction to Corrosion Science and Engineering]. Per. s anhl./Pod red. A. M. Sukhotyna.—L.: Khymyia, 456.
Thomas S., Birbilis N., Venkatraman M. S., Cole I. S. (2013). Self-repairing oxides to protect zinc: Review, discussion and prospects. Corrosion Science. 69, 11–22. doi.org/10.1016/j.corsci.2013.01.011
H. Veisaha, V. H. Matыs, V. A. Ashuiko, N. E. Akulych, M. Dzhonson-Nedzelka. (2018). Zashchytnye svoistva konversyonnykh pokrytyi, poluchennykh na tsynke v vanadatnom rastvore s dobavkamy yonov Zn2+ y Fe2+. [Protective properties of conversion coatings obtained on zinc in vanadate solution with ion additives]. Trudy BHTU, seryia 2, (1), 104–113.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.