MEASUREMENT OF BLOOD PRESSURE BY USING ARTIFICIAL NEURAL NETWORKS WITH ECG AND PPG SIGNAL PROCESSING
DOI:
https://doi.org/10.30890/2709-2313.2025-40-02-025Keywords:
blood pressure, electrocardiography, photoplethysmography, neural network, feedforward neural networkAbstract
In this article, a new method for continuous cuffless estimation of blood pressure (BP) is proposed based on feature extraction from two data sources: electrocardiography (ECG) and photoplethysmography (PPG) signals. At pre-processing stage, signals andMetrics
References
Hypertension: Information, Facts and Statistics. Disabled World [Electronic resource] – 2023. Available at: www.disabled-world.com/health/cardiovascular/hypertension – 2 March 2023
Mortality patterns in hypertension [Text] / H. Arima, F. Barzi, J. Chalmers // Journal of Hypertension. – 2011. – Vol. 29, iss. 1. – P. 3-7.
DOI: https://doi.org/10.1097/01.hjh.0000410246.59221.b1.
Raised Blood Pressure [Electronic resource] – 2020. Available at: http://www.who.int/gho/ncd/ risk_factors/en/ – 20 Sep. 2020
WHO. A global brief on Hypertension, Silent killer, global public health crisis [Electronic resource] – 2013. Available at: https://apps.who.int/iris/rest/bitstreams/195800/retrieve – 20 May 2023
Screening for Hypertension and Lowering Blood Pressure for Prevention of Cardiovascular Disease Events [Text] / A. Viera // The Medical Clinics of North America. – 2017. – Vol. 101, iss. 4. – P. 701-712.
DOI: https://doi.org/10.1016/j.mcna.2017.03.003
ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [Text] / P. Whelton, R. Carey, W. Aronow, D. CaseyJr, K. Collins, C. Himmelfarb, S. DePalma, S. Gidding, K. Jamerson, D. Jones, E. MacLaughlin, P. Muntner, B. Ovbiagele, S. SmithJr, C. Spencer, R. Stafford, S. Taler, R. Thomas, K. WilliamsSr, J. Williamson, J. WrightJr // Hypertension. – 2017. – Vol. 71, iss. 6. – P. 13-115. DOI: https://doi.org/10.1161/HYP.0000000000000065
Screening for high blood pressure in adults: U.S. Preventive Services Task Force recommendation statement [Text] / A. Siu // Annals of Internal Medicine. – 2015. – Vol. 163, iss. 10. – P. 778-786. DOI: https://doi.org/10.7326/m15-2223
ACC/AHA versus ESC/ESH on hypertension guidelines: JACC guideline comparison [Text] / G. Bakris, W. Ali, G. Parati // Journal of the American College of Cardiology. – 2019. – Vol. 73, iss. 23. – P. 3018-3026.
DOI: https://doi.org/10.1016/j.jacc.2019.03.507
Intraoperative Invasive Blood Pressure Monitoring and the Potential Pitfalls of Invasively Measured Systolic Blood Pressure [Text] / S. Lam, H. Liu, Z. Jian, J. Settels, C. Bohringer // Cureus Journal of Medical Science. – 2021. – Vol. 13. – Article No. e17610. DOI: https://doi.org/10.7759/cureus.17610.
Characterization of the oscillometric method for measuring indirect blood pressure [Text] / L. Geddes, M. Voelz, C. Combs // Annals of Biomedical Engineering. – 1982. – Vol. 10, iss. 6. – P. 271-280. DOI: https://doi.org/10.1007/BF02367308
Introduction of the auscultatory method of measuring blood pressure–including a translation of Korotkoff’s original paper [Text] / L. Geddes, H. Hoff, A. Badger // Cardiovascular research center bulletin. – 1966. – Vol. 5, iss. 2. – P. 57-74. PMID: 5341624.
Home blood pressure monitoring [Text] / J. George, T. MacDonald // European Cardiology Review. – 2015. – Vol. 10, iss. 2. – P. 95-100.
DOI: https://doi.org/10.15420/ecr.2015.10.2.95
Accurate, reproducible measurement of blood pressure [Text] / N. Campbell, A. Chockalingam, J. Fodor, D. McKay // Canadian Medical Association Journal. – 1990. – Vol. 143, iss. 1. – P. 19-22. PMID: 2192791
Influence of the cuff deflation mode on oscillometric blood pressure measurements [Text] / W. More, K. Barbé // In Proceedings of the IEEE international workshop. – Bari, Italy, 30-31 May 2011. – P. 652-656
DOI: https://doi.org/10.1109/MeMeA.2011.5966650
BioWatch: a noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability [Text] / S. Thomas, V. Nathan, C. Zong // IEEE Journal of Biomedical and Health Informatics. – 2014. – Vol. 20, iss. 5. – P. 1291-1300
DOI: https://doi.org/10.1109/JBHI.2015.2458779
Basic Experiment of Blood-pressure Measurement which Uses FBG Sensors [Text] / Y. Miyauchi, S. Koyama, H. Ishizawa // In Proceedings of the Instrumentation and measurement technology conference. – Minneapolis, MN, USA, 6-9 May 2013. – P. 1767-1770.
DOI: https://doi.org/10.1109/I2MTC.2013.6555718
Non-invasive blood pressure measurement by pulse wave analysis using FBG sensor [Text] / Y. Katsuragawa, H. Ishizawa // In Proceedings of the Instrumentation and measurement technology conference. – Pisa, Italy, 11-14 May 2015. – P. 511-515. DOI: https://doi.org/10.1109/I2MTC.2015.7151320
X. Ding et al., "Continuous Blood Pressure Measurement From Invasive to Unobtrusive: Celebration of 200th Birth Anniversary of Carl Ludwig," in IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 6, pp. 1455-1465, Nov. 2016. DOI: https://doi.org/10.1109/JBHI.2016.2620995.
Nye, E. The effect of blood pressure alteration on the pulse wave velocity. Br. Heart J. 1964, 26, 261–265
Gribbin, B.; Steptoe, A.; Sleight, P. Pulse wave velocity as a measure of blood pressure change. Psychophysiology 1976, 13, 86–90.
Teng X F, Zhang Y T. Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach //Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, 2003, 4: pp. 3153-3156.
M. Sharma, K. Barbosa, V. Ho, D. Griggs, T. Ghirmai, S. K. Krishnan, T. Hsiai , Jung-Chih Chiao, Hung Cao. Cuff-Less and Continuous Blood Pressure Monitoring: A Methodological Review. Technologies 2017, vol. 5, p. 21;
X. Ding, N. Zhao, G. Zhong Yang, Y. Ting Zhang et. Al. Continuous Blood Pressure Measurement From Invasive to Unobtrusive: Celebration of 200th Birth Anniversary of Carl Ludwig. IEEE Journal of Biomedical and Health Informatics р.р, vol. 99, October 2016, p.1
Bramwell JC, and Hill AV. The velocity of the pulse wave in man. Proceedings of the Royal Society, London 1922; vol, B93, pp. 298-306.
Fung P, Dumont G, Ries C, et al. Continuous noninvasive blood pressure measurement by pulse transit time //Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE. IEEE, 2004, vol. 1, pp. 738-741.
Poon C C Y, Zhang Y T. Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time[C]//Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the. IEEE, 2006, pp. 5877-5880.
Jadooei A, Zaderykhin O, Shulgin V I. Adaptive algorithm for continuous monitoring of blood pressure using a pulse transit time[C]//Electronics and Nanotechnology (ELNANO), 2013 IEEE XXXIII International Scientific Conference. IEEE, 2013, pp. 297-301.
V. Shulgin, A. Judway, O. N. Antonchik. Cuffless blood pressure estimation algorithm based on the likelihood limiting method. Clinical informatics and telemedicine, 2015, vol.11, issue 12. pp.63–68 [in russian].
O. Antonchyk, K. Nasedkin, V. Sharonov. Arterial blood pressure evaluation based on joint processing of the vital signs parameters. Telecommunications and Radio Engineering. Volume 75, 2016, Issue 18, pages 1679-1693
Y.S. Yan and Y.T. Zhang,”A Novel Calibration Method for Noninvasive Blood Pressure Measurement Using Pulse Transit Time”, Proceedings of the 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors St Catharine's College,
F. Rundo, A. Ortis,S. Battiato, S. Conoci. Advanced Bio-Inspired System for Noninvasive Cuff-Less Blood Pressure Estimation from Physiological Signal Analysis. Computation 2018, 6(3), 46;
DOI: https://doi.org/10.3390/computation6030046
Zeng-Ding Liu, Ji-Kui Liu,Bo Wen,Qing-Yun He,Ye Li, Fen Miao. Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals. Sensors 2018, 18(12), 4227; DOI: https://doi.org/10.3390/s18124227
Q. Zhang, X. Chen, F. Zhen, S. Xia. Cuff-less blood pressure measurement using pulse arrival time and Kalman filter. Journal of Micromechanics and Microengineering in publishing, October 2016. DOI: https://doi.org/10.1088/1361-6439/27/2/024002
Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients [Text] / C. Ahlstrom, A. Johansson, F. Uhlin // Journal of Artificial Organs. – 2005. – Vol. 8, iss. 3. – P. 192-197. DOI: https://doi.org/10.1007/s10047-005-0301-4
Assessment of pulse transit time to indicate cardiovascular changes during obstetric spinal anaesthesia [Text] / G. Sharwood-Smith, J. Bruce, G. Drummond // British Journal of Anaesthesia. – 2005. – Vol. 96, iss. 1. – P. 100-105.
DOI: https://doi.org/10.1093/bja/aei266
Noninvasive Cuffless Estimation of Blood Pressure from Pulse Arrival Time and Heart Rate with Adaptive Calibration [Text] / F. Cattivelli, H. Garudadri // In Proceedings of the IEEE BSN Sixth international workshop. – Berkeley, CA, USA, 03–05 June 2009. – P. 114-119. DOI: https://doi.org/10.1109/BSN.2009.35
Secondary peak detection of PPG signal for continuous cuffless arterial blood pressure measurement [Text] / X. He, R. Goubran, X. Liu // IEEE Transactions on Instrumentation and Measurement. – 2014. – Vol. 63, iss. 6. – P. 1431-1439. DOI: https://doi.org/10.1109/TIM.2014.2299524
Electrocardiogram-assisted blood pressure estimation [Text] / S. Ahmad, S. Chen, K. Soueidan // IEEE Transactions on Biomedical Engineering. – 2012. – Vol. 59, iss. 3. – P. 608-618. DOI: https://doi.org/10.1109/TBME.2011.2180019
Cuff-Free Blood Pressure Estimation Using Pulse Transit Time and Heart Rate [Text] / R. Wang, W. Jia, Z. Mao // In Proceedings of the 12th international conference on signal processing. – Hangzhou, China, 19–23 October 2014. – P. 115-118 DOI: https://doi.org/10.1109/ICOSP.2014.7014980
Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveformbased ANN-LSTM network [Text] / S. Tanveer, K. Hasan // Biomedical Signal Processing and Control. – 2019. – Vol. 51. – P. 382-392. DOI: https://doi.org/10.1016/j.bspc.2019.02.028
Estimation of Blood Pressure by Using Electrocardiogram (ECG) and Photo-Plethysmogram (PPG) [Text] / S. Kumar, S. Ayub // In Proceedings of the 5th international conference on communication systems and network technologies. – Gwalior, India, 4–6 April 2015. – P. 521-524.
DOI: https://doi.org/10.1109/CSNT.2015.99
A Novel Calibration Method for Noninvasive Blood Pressure Measurement Using Pulse Transit Time [Text] / Y. Yan, Y. Zhang // In Proceedings of the 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors St Catharine's College. – Cambridge, UK, 19-22 August 2007. – P. 22-24. DOI: https://doi.org/10.1109/ISSMDBS.2007.4338283
Advanced Bio-Inspired System for Noninvasive Cuff-Less Blood Pressure Estimation from Physiological Signal Analysis [Text] / F. Rundo, A. Ortis, S. Battiato, S. Conoci // Computation. – 2018. – Vol. 6, iss. 3. – Article No. 46. DOI: https://doi.org/10.3390/computation6030046
Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals [Text] / Z. Liu, J. Liu, B. Wen, Q. He, Y. Li, F. Miao // Sensors. – 2018. – Vol. 18, iss. 12. – Article No. 4227. DOI: https://doi.org/10.3390/s18124227
A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography [Text] / M. Rong, K. Li // Biomedical Signal Processing and Control. – 2021. – Vol. 68. – Article No. 102772.
DOI: https://doi.org/10.1016/j.bspc.2021.102772
Cuff-Less Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring [Text] / M. Kachuee, M. Kiani, H. Mohammadzade, M. Shabany // IEEE Transactions on Biomedical Engineering. – 2017. – Vol. 64. – P. 859-869. DOI: https://doi.org/10.1109/TBME.2016.2580904
Cuff-less PPG based continuous blood pressure monitoring: a smartphone based approach [Text] / A. Gaurav, M. Maheedhar, V. Tiwari, R. Narayanan // In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. – 16-20 August 2016, Orlando, FL, USA. – P. 607-610. DOI: https://doi.org/10.1109/EMBC.2016.7590775
Cuff-less blood pressure measurement using pulse arrival time and Kalman filter [Text] / Q. Zhang, X. Chen, F. Zhen, S. Xia // Journal of Micromechanics and Microengineering. – 2017. – Vol. 27, iss. 2. – Article No. 024002. DOI: https://doi.org/10.1088/1361-6439/27/2/024002
Non-invasive blood pressure estimation from ECG using machine learning techniques [Text] / M. Simjanoska, M. Gjoreski, M. Gams // Sensors. – 2018. – Vol. 18, iss. 4. – Article No. 1160. DOI: https://doi.org/10.3390/s18041160
Evaluation of blood pressure changes using vascular transit time [Text] / J. Foo, C. Lim, P. Wang // Physiological Measurement. – 2006. – Vol. 27, iss. 8. – P. 685-694. DOI: https://doi.org/10.1088/0967-3334/27/8/003
Cuffless and continuous blood pressure estimation from the heart sound signals [Text] / R. Peng, W. Yan, N. Zhang // Sensors. – 2015. – Vol. 15, iss. 9. – P. 23653-23666 DOI: https://doi.org/10.3390/s150923653
Cuffless differential blood pressure estimation using smart phones [Text] / V. Chandrasekaran, R. Dantu, S. Jonnada // IEEE Transactions on Biomedical Engineering. – 2013. – Vol. 60, iss. 4. – P. 1080-1089.
DOI: https://doi.org/10.1109/TBME.2012.2211078
Noninvasive cuffless blood pressure measurement by vascular transit time [Text] / S. Shukla, K. Kakwani, A. Patra // In Proceedings of the 28th international conference on VLSI Design. – Bangalore, India, January 2015. – P. 535-540. DOI: https://doi.org/10.1109/VLSID.2015.96
A new estimate technology of non-invasive continuous blood pressure measurement based on electrocardiograph [Text] / C. Wu, C. Chuang, Y. Chen // Advances in Mechanical Engineering. – 2016. – Vol. 8, iss. 6. – P. 1-8.
DOI: https://doi.org/10.1177/1687814016653689
Emotion recognition of human speech using deep learning method and MFCC features [Text] / S. Hazra, R. Ema, S. Galib, S. Kabir, N. Adnan // Radioelectronic and computer systems. – 2022. – Vol. 4. – P. 161-172.
DOI: https://doi.org/10.32620/reks.2022.4.13
Current and Future Use of Artificial Intelligence in Electrocardiography [Text] / M. Martínez-Sellés, M. Marina-Breysse // Journal of Cardiovascular Development and Disease. – 2023. – Vol. 10, iss. 4. – Article No. 175.
DOI: https://doi.org/10.3390/jcdd10040175
Neural network based image classifier resilient to destructive perturbation influences – architecture and training method [Text] / V. Moskalenko, A. Moskalenko // Radioelectronic and computer systems. – 2022. – Vol. 3. – P. 95-109. DOI: https://doi.org/10.32620/reks.2022.3.07
Predictive model of COVID-19 epidemic process based on neural network [Text] / S. Krivtsov, I. Meniailov, K. Bazilevych, D. Chumachenko // Radioelectronic and computer systems. – 2022. – Vol. 4. – P. 7-18. DOI: https://doi.org/10.32620/reks.2022.4.01
Developing Feedforward Neural Networks as Benchmark for Load Forecasting: Methodology Presentation and Application to Hospital Heat Load Forecasting [Text] / S. Malte, A. Hagemeier // Energies. – 2023. – Vol. 16, iss. 4. – Article No. 2026. DOI: https://doi.org/10.3390/en16042026
Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography [Text] / T. Huynh, R. Jafari, W. Chung // IEEE Transactions on Biomedical Engineering. – 2019. – Vol. 66. – P. 967-976.
DOI: https://doi.org/10.1109/tbme.2018.2865751
Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio [Text] / X. Ding, Y. Zhang, J. Liu, W. Dai, H. Tsang // IEEE Transactions on Biomedical Engineering. – 2016. – Vol. 66, iss. 4. – P. 964-972. DOI: https://doi.org/10.1109/TBME.2015.2480679
New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy [Text] / W. Lin // Physiological Measurement. – 2018. – Vol. 39, iss. 2. – Article No. 025005.
DOI: https://doi.org/10.1088/1361-6579/aaa454
Estimation of cerebral blood flow velocity during breath-hold challenge using artificial neural networks [Text] / M. Al-Abed, A. Al-Bashir, A. Al-Rawashdeh, R. Alex, R. Zhang, D. Watenpaugh, K. Behbehani // Computers in Biology and Medicine. – 2019. – Vol. 115. – Article No. 103508.
DOI: https://doi.org/10.1016/j.compbiomed.2019.103508
Automated diagnostic tool for hypertension using convolutional neural network [Text] / D. Soh, E. Ng, V. Jahmunah, S. Oh, R. Tan, U. Acharya // Computers in Biology and Medicine. – 2020. – Vol. 126. – Article No. 103999.
DOI: https://doi.org/10.1016/j.compbiomed.2020.103999
A new estimate technology of non-invasive continuous blood pressure measurement based on electrocardiograph [Text] / C. Wu, C. Chuang, Y. Chen, S. Chen // Advances in Mechanical Engineering. – 2016. – Vol. 8, iss. 6.
DOI: https://doi.org/10.1177/1687814016653689
Cuffless blood pressure estimation methods: Physiological model parameters versus machine-learned features [Text] / J. Esmaelpoor, M. Moradi, A. Kadkhodamohammadi // Physiological Measurement. –2021. – Vol. 42. – Article No. 035006. DOI: https://doi.org/10.1088/1361-6579/abeae8
Continuous Blood Pressure Estimation Based on Multi-Scale Feature Extraction by the Neural Network With Multi-Task Learning [Text] / J. Hengbing, Z. Lili, H. Dequn, F. Qianjin // Frontiers in Neuroscience. – 2022. – Vol. 16. – Article No. 883693. DOI: https://doi.org/10.3389/fnins.2022.883693
Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals [Text] / A. Malayeri, M. Khodabakhshi // Scientific reports. – 2022. – Vol. 12. – Article No. 6633. DOI: https://doi.org/10.1038/s41598-022-10244-6
Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model [Text] / Y. Li, L. Harfiya, K. Purwandari, Y. Lin // Sensors. – 2020. – Vol. 20. – Article No. 5606. DOI: https://doi.org/10.3390/s20195606
A benchmark for machine-learning based non-invasive blood pressure estimation using photoplethysmogram [Text] / S. González, W. Hsieh, T. Chen // Scientific Data. – 2023. – Vol. 10. – Article No. 149. DOI: https://doi.org/10.1038/s41597-023-02020-6
Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives [Text] / N. Pilz, A. Patzak, T. Bothe // Blood Pressure. – 2022. – Vol. 31, iss. 1. – P. 254-269.
DOI: https://doi.org/10.1080/08037051.2022.2128716.
Real-Time Cuffless Continuous Blood Pressure Estimation Using 1D Squeeze U-Net Model: A Progress toward mHealth [Text] / T. Athaya, S. Choi // Biosensors. – 2022. – Vol. 12. – Article No. 655. DOI: https://doi.org/10.3390/bios12080655
Methods for Continuous Blood Pressure Estimation Using Temporal Convolutional Neural Networks and Ensemble Empirical Mode Decomposition [Text] / K. Zhou, Z. Yin, Y. Peng, Z. Zeng // Electronics. – 2022. – Vol. 11. – Article No. 1378. DOI: https://doi.org/10.3390/electronics11091378
Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation [Text] / L. Harfiya, C. Chang, Y. Li // Sensors. – 2021. – Vol. 21. – Article No. 2952
DOI: https://doi.org/10.3390/s21092952
Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethysmogram During Arrhythmias [Text] / L. ZengDing, Z. Bin, L. Ye, T. Min, M. Fen // Frontiers in Physiology. – 2020. – Vol. 11. – Article No. 575407. DOI: https://doi.org/10.3389/fphys.2020.575407
Continuous Blood Pressure Estimation from Two-Channel PPG Parameters by XGBoost [Text] / X. Che, M. Li, W. Kang, F. Lai, J. Wang // In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). – Dali, China, 06-08 December 2019. – P. 2707-2712.
DOI: https://doi.org/10.1109/ROBIO49542.2019.8961600.
A Machine Learning Approach to the Non-Invasive Estimation of Continuous Blood Pressure Using Photoplethysmography [Text] / B. Tarifi, A. Fainman, A. Pantanowitz, D. Rubin // Applied Sciences. – 2023. – Vol. 13. – Article No. 3955. DOI: https://doi.org/10.3390/app13063955
A novel method for non-invasive blood pressure estimation based on continuous pulse transit time: An observational study [Text] / S. Hangsik // Psychophysiology. – 2023. – Vol. 60, iss. 2. – Article No. e14173.
DOI: https://doi.org/10.1111/psyp.14173
Non-invasive Cuff-less Measurement of Blood Pressure Based on Machine Learning [Text] / O. Viunytskyi, V. Shulgin, V. Sharonov, A. Totsky // In Proceedings of the IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering. – Lviv-Slavske, Ukraine, 25-29 February 2020. – P. 203-206.
DOI: https://doi.org/10.1109/TCSET49122.2020.235423
Human Blood Pressure Measurement Using Machine Learning Strategy [Text] / O. Viunytskyi, V. Shulgin, A. Totsky, K. Egiazarian // Telecommunications and Radio Engineering. – 2022. – Vol. 81, iss. 3. – P. 1-21.
DOI: https://doi.org/10.1615/TelecomRadEng.2022037783
Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset [Text] / M. Wong, H. Hei, S. Lim, E. Ng // Mathematical Biosciences and Engineering. – 2023. – Vol. 20, iss. 1. – P. 975-997. DOI: https://doi.org/10.3934/mbe.2023045
Estimation of Continuous Blood Pressure from PPG via a Federated Learning Approach [Text] / E. Brophy, M. Vos, G. Boylan, T. Ward // Sensors. – 2021. – Vol. 21. – Article No. 6311. DOI: https://doi.org/10.3390/s21186311
Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation [Text] / L. Harfiya, C. Chang, Y. Li // Sensors. – 2021. – Vol. 21. – Article No. 2952.
DOI: https://doi.org/10.3390/s21092952
MIMIC-III Waveform Database [Electronic resource] // PhysioNet. – Mode of access: https://physionet.org/content/mimic3wdb/1.0/ (date of access: 09.06.2025).
Moody, B., Moody, G., Villarroel, M., Clifford, G. D., & Silva, I. (2020). MIMIC-III Waveform Database (version 1.0). PhysioNet.
DOI: https://doi.org/10.13026/c2607m.
Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3. PMID: 160035.
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.
XAI-MEDICA, Equipment’s catalog [Electronic resource] – 2023. Available at: https://xai-medica.com/en/equipments.html – 3 March 2023
Freund, Y.; Schapire, R. E.; Large margin classification using the perceptron algorithm. Machine Learning 1999, 37(3), 277–296. doi: 10.1023/A:1007662407062
Andreas, Z., B. Simulation Neuronaler Netze; Publisher: De Gruyter Oldenbourg, Germany, 1994; Volume 73.
Sharkawy, A.N.; Koustoumpardis, P.N.; Aspragathos, N. Neural Network Design for Manipulator Collision Detection Based only on the Joint Position Sensors. Robotica 2019, 30(10), 1737–1755. doi: 10.1017/S0263574719000985
Chester, D.L. Why Two Hidden Layers are Better than One. In Proceedings of the IEEE International Joint Conference on Neural Networks, Washington, DC, 15–19 January 1990, 265–268. doi: 10.1016/0925-2312(90)90016-K
Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science 2021, 2(6), 420. doi: 10.1007/s42979-021-00815-1.
Isaac, A.O.; Aman, J.; Esther, O.A.; Victoria, D.K.; Abdelatif, M.N.; Humaira, A. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4(11), e00938. doi: 10.1016/j.heliyon.2018.e00938
Ahmed, T. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Computing and Informatics Journal 2018, 3(2), 334–340. doi: 10.1016/j.fcij.2018.10.003
Hengbing, J.; Lili, Z.; Dequn, H.; Qianjin, F. Continuous Blood Pressure Estimation Based on Multi-Scale Feature Extraction by the Neural Network With Multi-Task Learning. Frontiers in Neuroscience 2022, 16, 883693. doi: 10.3389/fnins.2022.883693
Malayeri, A.B.; Khodabakhshi, M.B. Concatenated convolutional neural network model for cuffless blood pressure estimation using fuzzy recurrence properties of photoplethysmogram signals. Scientific reports 2022, 12, 6633. doi: 10.1038/s41598-022-10244-6
Jinzhong, Z., Xu, Y. Training Feedforward Neural Net-works Using an Enhanced Marine Predators Algorithm. Processes, 2023, vol. 11, iss. 3, article no. 924. DOI: 10.3390/pr11030924
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.