ОГЛЯДОВА СТАТТЯ ОСНОВНІ АСПЕКТИ ФІЗІОЛОГІНИХ ТА БІОХМІЧНИХ ПРОЦЕСІВ В ОРГАНІЗМІ ГІДРОБІОНТІВ В АДАПТАЦІЙНО-КОМПЕНСАТОРНИЙ ПЕРІОД

Автор(и)

DOI:

https://doi.org/10.30890/2709-2313.2023-21-02-001

Ключові слова:

parameters of homeostasis, processes, hydrobionts organism, adaptation

Анотація

The article presents aspects of physiological and biochemical processes in the organism of hydrobionts during their adaptation. The ways of regulation of the main functions in their body are considered: neuro-humoral, biochemical, impulse conduction (cent

Metrics

Metrics Loading ...

Посилання

Buzevych, I. Yu., & Tretiak, O.M. (2005). Naukovi osnovy spriamovanoho formuvannia ikhtiofauny dniprovskykh vodoskhovyshch. Problemy vidtvorennia aboryhenykh vydiv ryb. Cherkasy, 213–216.

Honcharova, O.V. (2022). Ekoloho – fiziolohichni parametry orhanizmu koropa v polikulturi pry zaryblenni ponyzzia Dnipra zhyttiestiikoiu moloddiu. Naukovyi zhurnal «Tavriiskyi naukovyi visnyk». 127, 348–354

Guerriero, G., & Garcia, G. (2018). Stress biomarkers and reproduction in fish. Fish environ. Vol. 2, 665–692.

Sondak, V.V.(2008). Osoblyvosti formuvannia stresovykh sytuatsii ta ryzyky vyzhyvannia aboryhennoi ikhtiofauny v poverkhnevykh vodakh Ukrainy. Dop. NAN Ukrainy. № 7, 191–200.

Fedonenko, O.V. (2010). Vplyv antropohennykh faktoriv na stan promyslovoi ikhtiofauny Zaporizkoho vodoskhovyshcha: Extended abstract of Doctor's thesis. Odesa.

Honcharova, O.V., Sekiou, O., & Kutishchev, P.S. (2021). Fizioloho-biokhimichni aspekty adaptatsiino-kompensatornykh protsesiv orhanizmu hidrobiontiv pid vplyvom tekhnolohichnykh chynnykiv. Rybohospodarska nauka Ukrainy. № 4, 101–114.

Buzevych, I. Yu., & Makarenko, A.V. (2020). Khyzhyi ikhtiokompleks Velykoburlutskoho vodoskhovyshcha yak chynnyk vplyvu na vyzhyvannia posadkovoho materialu roslynoidnykh ryb. Rybohospodarska nauka Ukrainy. № 3 (53), 5–18

Poff, N.L., & Zimmerman, J. H. (2010). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw. Biol., 194-205.

Кorzhov, Ye., & Honcharova, O. (2005). Actual problems of natural sciences: modern scientific discussions: Collective monograph: Riga: Izdevniecība “Baltija Publishing”, 684.

Barton, B.A. and Iwama, G.K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases, 1: 3-26.

Farombi, E., Adelowo, O., & Ajimoko, Y. (2007). Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African Cat fish (Clarias gariepinus) from Nigeria ogun river. Int. J. Environ. Res. Public Health. № 4, 158–165.

Atanasov, V. et al. (2012). Study on levels of some heavy metals in water and liver of carp (Cyprinus carpio L.) from waterbodies in Stara Zagora Region. Bulgaria. Agric. Sci. Technol, 321–327

Atanasov, V., Staykov, J., & Petkov, G. (2011). Hydrobionts. Indicators for pollution of aquatic ecosystems. In Handbook of Applied Ecology. 2nd Alfamarket: Stara Zagora, Bulgaria, 318.

Anaga, A., Abu, G.O. (1996). A laboratory scale cultivation of Chlorella and Spirulina using waste. Bio-resource Technology, 58(1), 93-95

Honcharova, O.V., Paraniak, R.P., & Hutyi B.V. (2019). Funktsionalnyi stan orhanizmu prisnovodnykh ryb za umov vplyvu abiotychnykh chynnykiv. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S. Z. Gzhytskoho: Seriia: Silskohospodarski nauky. 21. № 90, 82–87

Symon, M. Yu., Hrytsyniak, I. I., & Kolesnyk, N. L. (2020). Rybnytsko-biolohichni pokaznyky vyroshchuvannia rannoi molodi rosiiskoho osetra za umovy vvedennia v yoho ratsion inaktyvovanykh pekarskykh drizhdzhiv. Vodni bioresursy ta akvakultura. № 1, 73–87.

Hrynzhevskyi, M.V., & Pekarskyi, A. V. (2004). Optymizatsiia vyrobnytstva produktsii akvakultury. Kyiv: PolihrafKonsaltynh, 328

Fegan, D. F. (2006). Functional foods for aquaculture: benefits of NuPro® and dietary nucleotides in aquaculture feeds. Nutritional biotechnology in the feed and food industries. Alltech's 22nd Annual Symposium: Lexington, Kentucky, 23-26 April: Lexington, Kentucky, USA, 2006, 419-432

Ognean, L., & Barbu, A. (2009). The estimation of the biostimulator potential of some fodder additives based on the main hematological and biometrical indices of brook trout (Salvelinus fontinalis M.). Annals of RSCB. 2009. Vol. XIV, ISS. 2, 292–296.

Honcharova, O. V., & Tushnytska, N. I. (2018). Fiziolohichne obgruntuvannia vykorystannia netradytsiinoho metodu obrobky syrovyny v akvakulturi. Rybohospodarska nauka Ukrainy. № 1, 54-56.

Hoseinifar, S.H., Dadar, M., & Ringо, E. (2017). Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario. Aquac. Res. Vol. 48, 3987-4000

Palamarchuk, R. A., Deren, O. V., & Kachai, H. V. (2016). Vplyv zghodovuvannia amarantu (Amaranthus) na rybnytski ta deiaki fizioloho-biokhimichni pokaznyky dvolitok koropa. Rybohospodarska nauka Ukrainy. № 2, 73–81.

Papandroulakis N., Divanach P., 2002, Automation for Intensive Fish Hatcheries, Global AquacultureAdvocate, Haziran 18-19.

Ringo E. et al. (2010). Prebiotics in aquaculture: a review. Aquaculture Nutrition. Vol. 16, 117–136.

Stara, A., Machova, J., & Velisek, J. (2012). Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environ. Toxicol. Pharmacol. 33. 334−43.

Barcellos, L. J. et al. (2012). Plasmatic levels of cortisol in the response to acute stress in Nile tilapia, Oreochromis niloticus (L.), previously exposed to chronic stress. Aquaculture Research, 30 (6), 437–444

Brander, K. (2010). Impacts of climate change on fisheries, Journal of Marine Systems, 79: 389-402

Fernandino, J. I. et al. (2013). Environmental stress-induced testis differentiation: Androgen as a by product of cortisol inactivation. Gen. Comp. Endocrinol, 36−44

Hrytsyniak, I.I., Khrystenko, D.S., & Kotovska, H.O. (2012). Naukovo-metodychni aspekty rozrobky naukovo-biolohichnykh obgruntuvan ta rezhymiv spetsialnykh tovarnykh rybnykh hospodarstv (STRH). Ahrosvit Ukrainy. № 1, 29–30.

Lauzeral, C. (2012). Prédiction du potentiel d’invasion des espèces non natives par des modèles de niche: approches méthodologiques et applications aux poissons d’eau douce sur le territoire français. France: Université Toulouse III - Paul Sabatier, 229.

Lushchak, V.I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatique Toxicol. No 101, 13−30

Kozii, O.M. (2020). Biomonitorynh poststresovykh adaptyvnykh zmin orhaniv travlennia sterliadi v umovakh zamknenoho vodozabezpechennia. Rybohospodarska nauka Ukrainy. №3 (53), 92–108

Dobrianska, O. P., Zabytivskyi, Y. M., & Deren, O. V. (2021). Digestibility of productive carp feeds under the effect of mannan oligosaccharide. AACL Bioflux. Vol. 14 (4), 2021–2026.

Hontela, A. (1997). Endocrine and physiological responses of fish to xenobiotics: Role of glucocorticosteroid hormones. Rev. Toxicol, 1−46.

King, H.R., Pankhurst, N.W., & Watts, M. (2007). Reproductive sensitivity to elevated water temperatures in female Atlantic salmon is heightened at certain stages of vitellogenesis. Journal of Fish Biology, 190-205

Kozyi, M. S. (2009). Otsenka sovremennoho sostoianyia hystolohycheskoi tekhnyky y puty usovershenstvovanyia yzuchenyia ykhtyofaunы. Kherson: Oldy-plius, 2009, 310

Kozyi, M. S. (2011). Hystomorfolohycheskye osobennosty ykhtyofaunі Yuha Ukraynі. Kherson: Oldy-plius, 180

Dekhtiarov, P. A., Yevtushenko, M. Yu., & Sherman, I. M. (2008). Fiziolohiia ryb. Kyiv: Ahrarna osvita, 341.

Karpovskyi, V. I. ta in. (2014). Endokrynna rehuliatsiia fiziolohichnykh funktsii: metodychni materialy dlia studentiv vyshchykh ahrarnykh zakladiv osvity 3-4 rivniv akredytatsii za napriamamy pidhotovky “Veterynarna medytsyna”: 6.110101-OKR «Bakalavr» ta 8.11010101-OKR «Mahistr» “Tekhnolohiia vyrobnytstva i pererobky produktsii tvarynnytstva”: 6.090102. OKR «Bakalavr» ta 8.60901020 - OKR «Mahistr». NUBIP Ukrainy; Kyiv, 43.

Georgieva, E., Yancheva, V., & Iliev, I. (2016). Histological and biochemical changes in liver of common carp (Cyprinus carpio L.) under metal exposure North-West. J. Zool, 12– 20.

Martinez-Porchas, M., Martinez-Cordova, L.R., & Ramos-Enriquez, R. (2009). Cortisol and glucose: Reliable indicators of fish stress. Pan-American Journal of Aquatic Sciences. Vol. 4 (2). 158–178

Mazurkevych, A. Y. (2012). Fiziolohiia tvaryn. Kyiv: Nova knyha, 2-he vyd., doopratsovane, 424.

Selye, H. (1950). Stress and the General Adaptation Syndrome: BMJ 1, 1392.

Romero, L.M. (2004). Physiological stress in ecology: lessons from biomedical research Trends Ecol. Evol. 19, 249− 255

Vinogradov, E. V., Simonov, V. M., & Recoubratsky, A. V. (2019). Selection for Stress Resistance at Early Stages of Development in Common Carp. Aquacultural and Biological Characteristics of Offspring, october 7-10 Berlin, Germany. Our Future Growing from Water. Aquaculture Europe, 593–1594.

Ziółkowska, E. et al.(2020). Effects of a Trans-Galac­tooli­gosaccharide on Biochemical Blood Parameters and Intestine Morphometric Parameters of Common Carp (Cyprinus carpio L.). Animals. 2020. Vol. 10 (4), 723–740

Zharchynska, V. S., & Hrynevych, N. Ye. (2022). Improving the technology of growing crustaceans the example of redclaw crayfish Cherax quadricarinatus. Scientific Messenger LNUVMB. Series: Agricultural sciences. vol. 24, no 96, 16–23

Zaykov, N. A. (2008). Aquaculture. Principles and Technologies. Sofia, Bulgaria: Publishing House “Cabri”, 2008, 376.

Honcharova O.V. et al. (2020). Biological substantiation of improvement of biotechnological map of production of aquaculture products "eco - direction". Ukrainian Journal of Ecology. 2020. 10 (1), 261–266

Sorgeloos, P., Dhert, P., Candreva, P. (2001). Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture, 200:147-159

Wan, A. H. et al. (2019). Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture. Vol. 11, iss. 3, 458‒492.

Pagé, C., & Terray, L. (2011). Nouvelles projections climatiques à échelle fine sur la France pour le XXI e siècle: les scenarii. Cerfacs: Scratch, 25.

Lenhardt, M., Prokes, M., & Jaric, I. (2005). Comparative analysis of morphometric characters of juvenile starlet Acipenser ruthenus L. from natural population and aquaculture. Journal of Fish Biology. № 65, 320–320

Mouthon, J., & Daufresne, M. (2006). Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saône: a large lowland river and of its two main tributaries (France). Global Change Biology, 441–449

Nakićenović, N., & Swart, R. (2000). Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University, 250.

David H. Evans, & James B. Claiborne (2005). The Physiology of Fishes. Third Edition (CRC Marine Biology Series). 624.

Sherwood N. M., & Hew C.L. (1994). Molecular Endocrinology of Fish. Vol.XIII. Academic Press. 474.

Опубліковано

2023-06-30

Як цитувати

Гончарова, О. (2023). ОГЛЯДОВА СТАТТЯ ОСНОВНІ АСПЕКТИ ФІЗІОЛОГІНИХ ТА БІОХМІЧНИХ ПРОЦЕСІВ В ОРГАНІЗМІ ГІДРОБІОНТІВ В АДАПТАЦІЙНО-КОМПЕНСАТОРНИЙ ПЕРІОД. European Science, 2(sge21-02), 82–94. https://doi.org/10.30890/2709-2313.2023-21-02-001

Статті цього автора (авторів), які найбільше читають