METHODS AND TOOLS FOR INTELLIGENT ANALYSIS OF UKRAINIAN-LANGUAGE TEXTS TO IDENTIFY EMOTIONAL MARKERS AND DETERMINE STRESS IN THE TEXT
DOI:
https://doi.org/10.30890/2709-2313.2025-41-02Ключові слова:
0Анотація
In today's information society, the rapid growth of text data, particularly on social networks, news resources, psychological support forums, and chatbots, creates an objective need for highly accurate tools for automatic analysis of the emotional contentMetrics
Посилання
A. Vaswani et al., “Attention is all you need”, in Advances in neural information processing systems, 2017, pp. 5998-6008.
“3 Apps for Mental Health”. App Development, Resources, Artificial Intelligence. URL: https://www.stonesouptech.com/3-apps-for-mental-health/ (available date: 25.09.2024).
“How much does it cost to develop an app like Wysa?” (Feb 1, 2024). URL: https://www.simublade.com/blogs/cost-to-develop-a-mental-health-app-like-wysa/ (available date: 25.09.2024).
“Психічне здоров’я – одне з параметрів, що визначає якість життя населення”. Департамент охорони здоров’я тернопільської облдерж адміністрації. URL: https://uozter.gov.ua/ua/pages/252 (available date: 20.09.2024).
A General Approach to Preprocessing Text Data // Machine learning, Data Science, big Data, Analytics, AI. URl: https://www.kdnuggets.com/2017/12/generalapproachpreprocessing-text-data.html
Abdulmajeed N. Q. A review on voice pathology: taxonomy, diagnosis, medical procedures and detection techniques, open challenges, limitations, and recommendations for future directions / N. Q. Abdulmajeed, B. Al-Khateeb, M. A. Mohammed // Journal of Intelligent Systems. — 2022. — Vol. 31, No. 1. — P. 855–875.
Abdulmajeed, N. Q., Al-Khateeb, B., and Mohammed, M. A. (2022). A review on voice pathology: taxonomy, diagnosis, medical procedures and detection techniques, open challenges, limitations, and recommendations for future directions. J. Intell. Syst. 31, 855–875. doi: 10.1515/jisys-2022-0058
Abhirami V. A. “Softmax vs LogSoftmax”. Medium, 2021. URL: https://medium.com/@AbhiramiVS/softmax-vs-logsoftmax-eb94254445a2 (дата звернення: 21.11.2024).
Al-Dhief F. T. A survey of voice pathology surveillance systems based on internet of things and machine learning algorithms / F. T. Al-Dhief, N. M. A. Latiff, N. N. N. Abd. Malik, [et al.] // IEEE Access. — 2020. — Vol. 8. — P. 64514–64533.
Al-Dhief F. T. Voice pathology detection and classification by adopting online sequential extreme learning machine / F. T. Al-Dhief, M. M. Baki, N. M. A. Latiff, [et al.] // IEEE Access. — 2021. — Vol. 9. — P. 77293–77306.
Al-Dhief, F. T., Baki, M. M., Latiff, N. M., Malik, N. N., Salim, N. S., Albader, M. A., et al. (2021). Voice pathology detection and classification by adopting online sequential extreme learning machine. IEEE Access 9, 77293–77306. doi: 10.1109/ACCESS.2021.3082565
Al-Dhief, F. T., Latiff, N. M., Malik, N. N., Salim, N. S., Baki, M. M., Albadr, M. A., et al. (2020). A survey of voice pathology surveillance systems based on internet of things and machine learning algorithms. IEEE Access 8, 64514–64533. doi: 10.1109/ACCESS.2020.2984925
Alhussein M. Automatic voice pathology monitoring using parallel deep models for smart healthcare / M. Alhussein, G. Muhammad // IEEE Access. — 2019. — Vol. 7. — P. 46474–46479.
Alhussein M. Voice pathology detection using deep learning on mobile healthcare framework / M. Alhussein, G. Muhammad // IEEE Access. — 2018. — Vol. 6. — P. 41034–41041.
Alhussein, M., and Muhammad, G. (2018). Voice pathology detection using deep learning on mobile healthcare framework. IEEE Access 6, 41034–41041. doi: 10.1109/ACCESS.2018.2856238
Alhussein, M., and Muhammad, G. (2019). Automatic voice pathology monitoring using parallel deep models for smart healthcare. IEEE Access 7, 46474–46479. doi: 10.1109/ACCESS.2019.2905597
Alzubaidi, Laith, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma, José Santamaría, Mohammed A. Fadhel, Muthana Al-Amidie, and Laith Farhan. "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions." Journal of big Data 8 (2021): 1-74.
Balit, E., & Chadli, A. (2020). GMFNet: Gated multimodal fusion network for visible-thermal semantic segmentation. In Proceedings of the 16th European Conference on Computer Vision (pp. 1–4).
Balit, E., & Chadli, A. (2020). GMFNet: Gated multimodal fusion network for visible-thermal semantic segmentation. In Proceedings of the 16th European Conference on Computer Vision (pp. 1–4).
Baracho R.M., Bax M., Ferreira L.G., Silva G.C. Sentiment analysis in social networks. Sentiment analysis and opinion mining. 2012. № 1. P. 115–125.
Basystiuk, O., Melnykova, N. (2023, October). Multimodal Learning Analytics: An Overview of the Data Collection Methodology. In 2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT) (pp. 1-4). IEEE.
Basystiuk, O.; Melnykova, N.; Rybchak, Z. Multimodal Learning Analytics: An Overview of the Data Collection Methodology. In Proceedings of the 2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT), Lviv, Ukraine, 19–21 October 2023.
Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O., 2019. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 .
Cao, F., Shi, T., Han, K., Wang, P., & An, W. (2023). RDFM: Robust deep feature matching for multi-modal remote sensing images. IEEE Geoscience and Remote Sensing Letters.
Cheng S-T, Lyu Y-J, Teng C. Image-Based Nutritional Advisory System: Employing Multimodal Deep Learning for Food Classification and Nutritional Analysis. Applied Sciences. 2025; 15(9):4911. https://doi.org/10.3390/app15094911
CM Transactions on Asian and Low-Resource Language Information Processing, vol. 23, 2024, pp. 1 - 20
Daxin Tan, Liqun Deng, Yu Ting Yeung, Xin Jiang, Xiao Chen,and Tan Lee, “Editspeech: A text based speech editing systemusing partial inference and bidirectional fusion,” arXiv preprintarXiv:2107.01554, 2021.
Derry Jatnikaa, Moch Arif Bijaksanaa, Arie Ardiyanti Suryania. “Word2Vec Model Analysis for Semantic Similarities in English Words”. 4th International Conference on Computer Science and Computational Intelligence 2019, (ICCSCI), 12-13 September 2019
Deruty, E. (2025) Intuitive understanding of MFCCs. The mel frequency cepstral coefficients. Medium.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 4171–4186). Association for Computational Linguistics. https://doi.org/10.48550/arXiv.1810.04805
Duda, S. (2025) Urban environmental audio classification using mel spectrograms. Medium. Available at: https://scottmduda.medium.com/urban-environmental-audio-classification-using-mel-spectrograms-706ee6f8dcc1
Greeshma Gogula. “Mental Illness Detection Using NLP”. California State University, Northridge: 2024-08-28, pp.1-86.
Havryliuk, M., Dumyn, I., Vovk, O. (2023). Extraction of Structural Elements of the Text Using Pragmatic Features for the Nomenclature of Cases Verification. In: Hu, Z., Wang, Y., He, M. (eds) Advances in Intelligent Systems, Computer Science and Digital Economics IV. CSDEIS 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-031-24475-9_57
Hossain M. S. Healthcare big data voice pathology assessment framework / M. S. Hossain, G. Muhammad // IEEE Access. — 2016. — Vol. 4. — P. 7806–7815.
Hossain, M. S., and Muhammad, G. (2016). Healthcare big data voice pathology assessment framework. IEEE Access 4, 7806–7815. doi: 10.1109/ACCESS.2016.2626316
Ian Goodfellow, Yoshua Bengio, Aaron Courville, and YoshuaBengio, Deep learning, vol. 1, MIT press Cambridge, 2016
Index.dev. (2024, April 16). Comparing unimodal vs. multimodal models in generative AI. Index.dev Blog. https://www.index.dev/blog/comparing-unimodal-vs-multimodal-models
Iqra Ameer, Muhammad Arif, Grigori Sidorov, Helena Gómez-Adorno, Alexander F. Gelbukh. “Mental Illness Classification on Social Media Texts using Deep Learning and Transfer Learning”. 2022, pp.1 – 12. CoRR abs/2207.01012.
Islam, R., and Tarique, M. (2022). A novel convolutional neural network based dysphonic voice detection algorithm using chromagram. Int. J. Electr. Comput. Eng. 12:5511. doi: 10.11591/ijece.v12i5.pp5511-5518
Jaafar, N.; Lachiri, Z. Multimodal fusion methods with deep neural networks and meta-information for aggression detection in surveillance. Expert Syst. Appl. 2022, 211, 118523.
Jean Nyandwi. “The Transformer Blueprint: A Holistic Guide to the Transformer Neural Network Architecture”. AI Research Blog, 2023. URL: https://deeprevision.github.io/posts/001-transformer/ (дата звернення: 21.11.2024).
Jiang, Q., Chi, Z., Ma, X., Mao, Q., Yang, Y., & Tang, J. (2025). Rebalanced Multimodal Learning with Data-aware Unimodal Sampling. arXiv preprint arXiv:2503.03792.
Kannan Nova. “Machine Learning Approaches for Automated Mental Disorder Classification based on Social Media Textual Data”. Contemporary Issues in Behavioral and Social Sciences, vol.7(1), 2023, pp. 70–83.
Karpathy and L. Fei-Fei, “Deep visual-semantic alignmentsfor generating image descriptions,” in Proceedings of the IEEEComputer Society Conference on Computer Vision and PatternRecognition (CVPR), 2015, pp. 3128–3137
Khaled A., Neamat E.T., Ahmad H.H. Sentiment analysis over social networks: an overview. International сonference in Systems, man and cybernetics: Proceedings, Hong Kong, 9-12 Oct. 2015. P. 2174–2179.
Konda Vaishnavi, U Nikhitha Kamath, B Ashwath Rao, N V Subba Reddy (2022). “Predicting Mental Health Illness using Machine Learning Algorithms”. Journal of Physics: Conference Series, vol. 2161, 1st International Conference on Artificial Intelligence, Computational Electronics and Communication System (AICECS 2021) 28-30 October 2021, Manipal, India
Lu, W., Li, J., Li, Y., Sun, A., and Wang, J. (2020). A CNN-LSTM-based model to forecast stock prices. Complexity 2020:6622927. doi: 10.1155/2020/6622927
M. Oncescu, A. S. Koepke, J. F. Henriques, Z. Akata, andS. Albanie, “Audio Retrieval with Natural Language Queries,”in Proceedings of Conference of the International Speech Communication Association, 2021, pp. 2411–2415.
Mantyla M., Graziotin D., Kuutila M. The evolution of sentiment analysis — a review of research topics, venues and top cited paper. Computer science review. 2018. № 27. P. 16–32.
Mao, K.; Zhang, W.; Wang, D.B.; Li, A.; Jiao, R.; Zhu, Y.; Wu, B.; Zheng, T.; Qian, L.; Lyu, W.; et al. Prediction of depression severity based on the prosodic and semantic features with bidirectional LSTM and time distributed CNN. IEEE Trans. Affect. Comput. 2022, 14, 2251–2265. https://doi.org/10.1109/taffc.2022.3154332.
Mao, K.; Zhang, W.; Wang, D.B.; Li, A.; Jiao, R.; Zhu, Y.; Wu, B.; Zheng, T.; Qian, L.; Lyu, W.; et al. Prediction of depression severity based on the prosodic and semantic features with bidirectional LSTM and time distributed CNN. IEEE Trans. Affect. Comput. 2022, 14, 2251–2265.
Miao, X.; Li, Y.; Wen, M.; Liu, Y.; Julian, I.N.; Guo, H. Fusing features of speech for depression classification based on higher-order spectral analysis. Speech Commun. 2022, 143, 46–56. ]
Miao, X.; Li, Y.; Wen, M.; Liu, Y.; Julian, I.N.; Guo, H. Fusing features of speech for depression classification based on higher-order spectral analysis. Speech Commun. 2022, 143, 46–56. https://doi.org/10.1016/j.specom.2022.07.006.
Michael M. Tadesse; Hongfei Lin; Bo Xu; Liang Yang. “Detection of Depression-Related Posts in Reddit Social Media Forum Publisher”. IEEE Access, vol.7, 2019, pp. 44883 – 44893.
Mienye, Ibomoiye Domor, Theo G. Swart, and George Obaido. 2024. "Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications" Information 15, no. 9: 517. https://doi.org/10.3390/info15090517
Milintsevich, K.; Sirts, K.; Dias, G. Towards automatic text-based estimation of depression through symptom prediction. Brain Inform. 2023, 10, 4.
Muhammad Arif, Iqra Ameer, Necva Bölücü, Grigori Sidorov, Alexander Gelbukh, Vinnayak Elangovan. “Mental Illness Classification on Social Media Texts using Deep Learning and Transfer Learning” . Computacion y Sistemas vol. 28(2), (2024), pp.451-464
N. Shakhovska, N. Boyko, P. Pukach. The Information Model of Cloud Data Warehouses International Conference on Computer Science and Information Technologies, CSIT 2018, September 11-14, Lviv, Ukraine, 2019, pp. 182-191.
Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and MingLiu, “Neural speech synthesis with transformer network,” inProceedings of the AAAI Conference on Artificial Intelligence,2019, vol. 33, pp. 6706–6713.
Nandi, P. (2025). CNNs for Audio Classification - TDS Archive - Medium. Available at: https://medium.com/data-science/cnns-for-audio-classification-6244954665ab
Nataliya Shakhovska, et. al.: "The Developing of the System for Autimatic Audio to Text Conversion", IT&AS’2021: Symposium on Information Technologies and Applied Sciences, March 5–6, 2021, Bratislava, Slovak Republic.
Nerella S, Bandyopadhyay S, Zhang J, Contreras M, Bumin A, Silva B, Sena J, Shickel B, Bihorac A, Rashidi P. “Transformers in healthcare: a survey”. arXiv. https://doi.org/10.48550/arXiv.2307.00067
P. Zdebskyi, V. Lytvyn,Y. Burov, and et. Intelligent system for semantically similar sentences identification and generation based on machine learning methods, CEUR Workshop Proceedings, 2020, pp. 317–346.
Panek D. Acoustic analysis assessment in speech pathology detection / D. Panek, A. Skalski, J. Gajda, R. Tadeusiewicz // International Journal of Applied Mathematics and Computer Science. — 2015. — Vol. 25, No. 3. — P. 631–643.
Panek, D., Skalski, A., Gajda, J., and Tadeusiewicz, R. (2015). Acoustic analysis assessment in speech pathology detection. Int. J. Appl. Math. Comput. Sci. 25, 631–643. doi: 10.1515/amcs-2015-0046
Park, J.; Moon, N. Design and implementation of attention depression detection model based on multimodal analysis. Sustainability 2022, 14, 3569.
Park, J.; Moon, N. Design and implementation of attention depression detection model based on multimodal analysis. Sustainability 2022, 14, 3569. https://doi.org/10.3390/su14063569.
Pavaloaia V.D., Teodor E.M., Fotache D., Danilet M. Opinion mining on social media data sentiment analysis of user preferences. Sustainability. 2019. Vol. 11. № 4459. P. 1–21.
Rao, Chengping, and Yang Liu. "Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization." Computational Materials Science 184 (2020): 109850.
Rastogi, M. (2020) Tutorial on lstms: a computational perspective. Towards data science.
Roberts, L. Understanding the Mel Spectrogram. 2020. Available online: https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53 (accessed on 22 December 2024).
S. Chowdhury and J. Sil, "FACERECOGNITION from NON-FRONTALIMAGES Using DEEP NEURALNETWORK," in 2017 Ninth InternationalConference on Advances in PatternRecognition (ICAPR), 2017, pp. 1-6.
Shahzad Qaiser, Ramsha Ali. “Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents”. School of Quantitative Sciences, International Journal of Computer Applications (0975 - 8887), vol. 181 - No.1, 2018, pp.25 - 29.
Shbair, Wazen M., Thibault Cholez, Jerome Francois, and Isabelle Chrisment. "A multi-level framework to identify HTTPS services." In NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, pp. 240-248. IEEE, 2016.
Sidhu, Manjit Singh, Nur Atiqah Abdul Latib, and Kirandeep Kaur Sidhu. "MFCC in audio signal processing for voice disorder: a review." Multimedia Tools and Applications (2024): 1-21.
T. Saravanan, T. Jhaideep, N. Hima Bindu. “Detecting depression using Hybrid models created using Google's BERT and Facebook's Fast Text Algorithms”. 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2022.
Tuncer T. Novel multi center and threshold ternary pattern based method for disease detection method using voice / T. Tuncer, S. Dogan, F. Ozyurt, [et al.] // IEEE Access. — 2020. — Vol. 8. — P. 84532–84540.
Vankayala Tejaswini, Korra Sathya Babu, Bibhudatta Sahoo. “Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model”.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need (arXiv:1706.03762). arXiv. https://doi.org/10.48550/arXiv.1706.03762
Vitaly Yakovyna, Natalya Shakhovska, "Software failure time series prediction with RBF, GRNN, and LSTM neural networks", Procedia Computer Science 207(4):837-847, DOI:10.1016/j.procs.2022.09.139.
Warda Rahim. “Modelling Insurance Claims Data Using the Tweedie Approach”. Medium, May 15, 2022. URL: https://medium.com/@wardarahim25/modelling-insurance-claims-data-using-the-tweedie-approach-94db8b14bfb5. (дата звернення: 20.11.2024).
Wisam Abdulazeez Qader, Musa M.Ameen, Bilal I. Ahmed. “An Overview of Bag of Words;Importance, Implementation, Applications, and Challenges”. Conference: 2019 International Engineering Conference (IEC).
Yang, J.; Luo, F.-L.; Nehorai, A. Spectral contrast enhancement: Algorithms and comparisons. Speech Commun. 2003, 39, 33–46.
Yin, F.; Du, J.; Xu, X.; Zhao, L. Depression detection in speech using transformer and parallel convolutional neural networks. Electronics 2023, 12, 328.
Zhao, Y.; Liang, Z.; Du, J.; Zhang, L.; Liu, C.; Zhao, L. Multi-head attention-based long short-term memory for depression detection from speech. Front. Neurorobotics 2021, 15, 684037.
Zheliznyak, Z. Rybchak, I. Zavuschak, Analysis of clustering algorithms, 2017. Advances in Intelligent Systems and Computing, 2017, pp. 305–314.
Zoryana Rybchak, et. al. "Analysis of methods and means of text mining". ECONTECHMOD, 6(2), 2017, pp. 73-78.
Басистюк О. А., Мельникова Н. І. Мультимодальне розпізнавання мовлення на основі звукових і текстових даних // Вісник Хмельницького національного університету. Серія: Технічні науки. – 2022. – № 5 (313). – С. 22–25.
Бехта І. А., Матвієнків О. С. Структурно-семантичні типи фразеологізмів в англійськомовному художньому прозовому тексті. Вчені записки ТНУ імені В. І. Вернадського. Серія: Філологія. Соціальні комунікації, УДК 821.111-112. 81’42, DOI https://doi.org/10.32838/2663-6069/2020.2-2/05
Дарчук Н. Лінгвістичні засади автоматичного сентимент аналізу українськомовного тексту. Science and education a new dimension. 2019. № 189. С. 10–13.
Датасет “reddit-mental-illness-82”. URL: https://huggingface.co/datasets/mavinsao/reddit-mental-illness-82
Іванов Є.М., Коваленко С.В. Розробка web-додатка для аналізу тональності текстової інформації. Інформаційні технології: наука, техніка, технологія, освіта, здоров’я. 2017. Ч. 1. С. 18–19.
Немеш О., Романюк А., Теслюк В. Аналіз тональності тексту: основні поняття та приклади застосування. Людина, комп’ютер, комунікації: зб. тез доп. міжнар. наук.-практ. конф., м. Львів, квіт. 2015 р. Львів, 2015. С. 47–49.
О. Басистюк, С. Гимон. “Застосування машинного навчання в оцінці психоемоційних станів людини”. 14-та міжнародна науково-технічна конференція: “Інформація, комунікація, суспільство – 2025”
Олег Басистюк, Наталія Мельникова, Ірина Думин, Андрій Думин. Ансамблевий підхід у мультимодальній обробці даних на основі Google API // Вісник Хмельницького національного університету. Серія: Технічні науки. – 2024. – № 4 (339). – С. 235–238
Рузакова О.В. Використання апаратів штучного інтелекту для формалізації фінансових об'єктів при побудові СППР / О. В. Рузакова, Н. П. Юрчук // Вісник Хмельницького національного університету: Технічні науки. – 2021. № 1. – C. 45-511.
Тональний словник української мови // GitHub. URl: https://github.com/lang-uk/tone-dict-uk
Шаховська Н.Б., Гірак Х.Ю. Шкалювання емоційно забарвлених слів для використання у методах класифікації тональності. Вісник Національного університету «Львівська політехніка». 2017. № 872(1). С. 195–203.
Шингалов Д.А., Мелешко Е.В., Минайленко Р.Н., Резниченко В.А. Методи автоматичного аналізу тональності контенту у соціальних мережах для виявлення інформаційно- психологічних впливів. Центральноукраїнський науковий вісник. 2017. № 30. С. 196–202.
Ялова К., Яшина К., Говорущенко Т., Тарасюк О. Сентимент аналіз засобами нейронної мережі. Математичне моделювання. 2021. № 1 (44). С. 30–37.
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Автори

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.