СИСТЕМИ ТА МЕТОДИ ВИРІШЕННЯ ПРОБЛЕМ
DOI:
https://doi.org/10.30890/2709-2313.2025-41-07-028Ключові слова:
Expert systems, algorithms of traditional and fuzzy mathematical logic. Symbolic and connectionist systems of artificial intelligenceАнотація
The review considers existing methods of solving problems and systems implementing these processes. Examples of strict problem solving using equations obtained from first principles and tested by long-term practice are given. The concept of constructing aMetrics
Посилання
Schrodinger E. (1954) Sherman Lecture at University College. London, May 1948. Published as «Nature and Greeks». Cambridge University Press. Cambridge. 97 p.
Kuhn T. (1970) The Structure of Scientific Revolutions. 2nd ed. Chicago. 222 p. 3.Polanyi M. (1962) Personal Knowledge: Towards a Post−Critical Philosophy. University of Chicago Press. 428 p.
Deutsch D. (1998) The Fabric of Reality: Towards a Theory of Everything. Penguin Books. 423 p.
Kline M. (1980). Mathematics. The Loss of Certainty. Oxford University Press.NY. 361pp.
Kirichok A.V., Kuklin V.M., Pryjmak A.V., Zagorodny A.G. (2015). Ion heating, burnout of the HF field and ion sound generation with the development of modulation instability of an intensive Langmuir wave in a plasma. // Physics of Plasmas, 22, 092118 (2015);
Kirichok A.V., Kuklin V.M., Zagorodny A.G.( 2016) // Physics–Uspekhi – 2016. – V.59. – N.7. – P. 669–688.
Kuklin V. M. (2021), Selected chapters (theoretical physics) / V. M. Kuklin. – Kh.: V. N. Karazin KhNU, 2021. – 244 p. ISBN 978−966−285−700−9 https://www.researchgate.net/publication/356932610_0_Selected_chapters_theoretical_physics_Contents
Kuklin V.M. (2019), On frequency and spatial periodicity of the waves of the anomalous amplitude in the ocean / V.M. Kuklin, E.V. Poklonskiy. // East European Journal of Physics 2019. – V.6. – N4. – P. 41−46. https://doi.org/10.26565/2312−4334−2019−4−04.
Chapman. J. (1980). Nonlinear Rayleigh−Benard convection between poorly conducting boundaries// J. Chapman and M. R. E. Proctor // J. Fluid Mech.. – 1980. – No. – 101, p. 759–765.
Belkin E.V.(2010) Structural transitions in the Proctor−Sivashinsky model / Belkin E.V., at all. // VANT, Series "Plasma electronics and new acceleration methods, 2010, No. 4 (68), pp. 296−298.
Gushchin I. V., at all.( 2013). Pattern formation in convective media // “Journal of Kharkiv National University”, physical series “Nuclei, Particles, Fields”, issue 1 /57. No. 1040, 2013. – P. 4–27.
Gushchin I. V., at all.(2013). Pattern Transitions in Unstable Viscous Convective Medium // arXiv preprint arXiv:1311.3884. – 2013
Gushchin I.V. Kuklin V. M., Mishin O. V., Pryimak O. V.( 2017) Modeling of physical processes using CUDA technology. – Kh.: V. N. Karazin Kharkiv National University, 2017. – 116 p. ISBN 978−966−285−420−6.
Buts V., Gushchin I., YanovskyV., V. Kuklin V., A. Mishyn A., E. Poklonsky E., Priymak A., Sevidov S., Sporov O. (2021) Computer modeling as a new method of research in natural science. Bulletin of V.N. Karazin Kharkiv National University, series "Mathematical modeling. Information technologies. Automated control systems" V.50, 37−48. https://doi.org/10.26565/2304−6201−2021−50−03 https://www.researchgate.net/publication/374991611_Computer_modeling_−_a_new_mechanism_of_discoveries_in_natural_science
Kőnig D. (1936).Theorie der endlichen und unendlichen Graphen / D. Kőnig. – Leipzig: Akademische Verlagsgesellschaf, 1936 – 258 pp.
Colmerauer A. (1992).Un système de communication enfrançais / Colmerauer Alain, Henry Kanoui, Robert Pasero et Philippe Roussel // Rapport préliminaire de fin de contrat IRIA, Groupe Intelligence Artificielle, Faculté des Sciences de Luminy, Université Aix−Marseille II, France
Church A.( 1956). Introduction to mathematical logic. Vol.1. / A. Church. – Princeton: Princeton University Press, 1956. – 485 p.
Zadeh Lotfi A. (1965).Fuzzy sets / Lotfi A. Zadeh // Information and Control. 1965. – Vol.8. – P. 338–353.
Kosko B. (1994).Fuzzy systems as universal approximation / B. Kosko // IEEE Transactions on Computers. 1994. – Vol. 43. – № 11. – P. 1329–1333.
Kuklin V. M. (2024).Representation of Knowledge and Operations with It : tutorial / V. M. Kuklin. – Kharkiv : V. N. Karazin KhNU, 2024. – 140 p.
Nilsen N.J. (1982).Principles of Artificial Intelligence. Springer Berlin, Heidelberg 476 pp.
Lauriere J.−L. (1990).Intelligence Artificielle. Paris. 1990. 580 pp.
Frege G. I.( 1997)The Frege Reader. Paperback. John Wiley & Sons. 1997.432pp.
Jang J.S.R. (1993)ANFIS: adaptive−network−based fuzzy inference system / J.S.R. Jang // IEEE transactions on systems, man, and cybernetics. 1993. – Vol.23. – № 3. – P.665–685.
Eccles J.C .( 1964).Brain and Conscious Experience: Study Week September 28 to October 4, 1964, of the Pontificia Academia Scientiarum.
Sperry J.C. (1970).Perception in the Absense of theNeocortical Commissures in Perception and Its Disorders, vol 48// Baltimore:Williams and Wilkins, 1970; pp.123−128.
Nagel T. (2000).The Psychophysical Nexus. New Essays on the A Priori//Oxford: Oxford University press, 2000; pp.432−471.
Gazzaniga M.S. The consciousness instinct: Unraveling the mystery of how the brain makes the mind/ Farrar, Straus and Giroux. 2018. 288 p.
Cline J.,Mouret J−B., Lipson H. (2013).TheEvolutionary Origins of Modularity//Proc.Of the Royal Sosciety of London B.: Biological Sciences 280. 2013 20122863.
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. ArXiv:1409.0473.
Kuklin V, Shapovalova O. Skrypka M. and Igor Melnyk I. (2025) Adaptation of Neural Networks to Scientific Search./ System research and information technologies (in print).
Сharniak E. (2019) Introduction то deep learning – The MIT Press Cambridge, Massachuset. 192 P,
,Bengio Y., Ducharme R., Vincent P A.( 2003) Neural Probabilistic Language Model // Journal of Machine Learning Research, 2003;3;1137–1155.
,Abramov G S. Gushchin I V, Sirenka T. O.( 2024) On the evolution of recurrent neural systems System research and information technologies. 2024;4;77−85.
Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. International Conference on Machine Learning pp. 1139–1147.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., at all. (2017) Attention is all you need. Advances in Neural Information Processing Systems 2017;5998–6008).
Fan H., Cheng S., de Nazelle A.J., Arcucci R.( 2025). ViTAE−SL: A vision transformer−based autoencoderand spatial interpolation learner for field reconstruction/ Computer Physics Communications 2025; 308. https://doi.org/10.1016/j.cpc.2024.109464
ZhuangY. Cheng S. Duraisamy K. Spatially (2024)−Aware Diffusion Models with Cross−Attention for Global Field Reconstruction with Sparse Observations. arXiv:2409.00230v1 [cs.LG] 30 Aug 2024.
Cheng S, Zhuang Y, Kahoouadji L. et all.( 2024). Multi−domain encoder−decoder neural networks for latent data assimilation in dynamical systems August 2024 Computer Methods in Applied Mechanics and Engineering DOI: 10.1016/j.cma.2024.117201
Yu, R. & Wang, R. (2024). Learning dynamical systems from data: An introduction to physics−guided deep learning. Proceedings Of The National Academy Of Sciences. 121, e2311808121 (2024).
Cornelio, C., Dash, S., Austel, V., Josephson, T., Goncalves, J., Clarkson, K., Megiddo, N., El Khadir, B. & Horesh, L. (2023). Combining data and theory for derivable scientific discovery with AI−Descartes. Nature Communications. 14, 1777 (2023)
Iten, R., Metger, T., Wilming, H., Del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Physical Review Letters. 124, 010508 (2020).
Chen, R., Rubanova, Y., Bettencourt, J. & Duvenaud, D. (2018).Neural ordinary differential equations. Advances In Neural Information Processing Systems. 31 (2018).
Bao−Bing Li, Yi Gu, and Shao−Feng Wu (2024).Discover Physical Concepts and Equations with Machine Learning / arXiv:2412.12161v1 [cs.LG] 11 Dec 2024.
, S.L. Brunton, J. L. Proctor, J. N. Kutz (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences 113 (15) (2016) 3932–3937. doi:10.1073/pnas. 1517384113.
M. Raissi, P. Perdikaris, G. E. Karniadakis, (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019) 686–707. doi:10.1016/j.jcp.2018.10.045.
Koenig B.C., Kim S., Sili Deng S.( 2024.) KAN−ODEs: Kolmogorov−Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics//arXiv:2407.04192v3 [cs.LG] 19 Sep 2024.
Liu Z, Wang Y. Vaidya S, Ruehle F, Halverson J., Solja M., Hou T. Y. та Tegmark M. (2024)/Kan: Kolmogorov−Arnold Networks. arXiv preprint arXiv:2404.19756, 2024.
Liu Z, Ma P, Wang V, Matusik W, Tegmark M. (2024)/KAN 2.0: Kolmogorov−Arnold Networks Meet Science/arXiv:24 08.10205v1 [cs.LG] 19 Aug 2024/
ZhuangY. Cheng S. Duraisamy K. (2024)-SpatiallyAware Diffusion Models with Cross-Attention for Global Field Reconstruction with Sparse Observations. arXiv:2409.00230v1 [cs.LG] 30 Aug 2024.
Bozorgasl Z and Chen. H. (2024) Wav−kan: Wavelet kolmogorov−arnold networks. arXiv preprint arXiv:2405.12832, 2024.
Howard A., Jacob B., et all. (2024). Finite basis Kolmogorov−Arnold networks: domain decomposition for data−driven and physics−informed problems. arXiv preprint arXiv:2406.19662, 2024.
Aghaei A. A. (2024). fkan: Fractional kolmogorov−arnold networks with trainable jacobi basis functions. arXiv preprint arXiv:2406.07456, 2024.
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Автори

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.