MATHEMATICAL MODELING OF THE DYNAMICS OF BIOLOGICAL SYSTEM DEVELOPMENT

Authors

DOI:

https://doi.org/10.30890/2709-2313.2024-35-00-004

Keywords:

population, victim, predator, equilibrium point, mortality, birth rate, differential equations, finite-difference methods, fluctuations, equilibrium relations of populations

Abstract

The types of conditional populations (one-year or perennial) under different conditions of their existence are considered, taking into account age characteristics, the function of mortality from natural causes, the birth rate, the function of eating victi

Metrics

No metrics found.

References

Sheludko Yu. K. (2021). Matematychni modeli dynamiky populiatsii [Mathematical models of population dynamics]. Zaporizhzhia: ZNU (50 p.). Otrymano z https://dspace.znu.edu.ua/jspui/handle/12345/5355. [in Ukraine].

Volterra V. (1931). Théorie mathématique de la lutte pour l'existence. Paris, Gauthier-Villars (222 р.) [in English].

Khusainov D. Ya., Kharchenko I. I., Shatyrko A. V. (2010). Vvedennia v modeliuvannia dynamichnykh system [Introduction to modeling of dynamic systems]. Kyiv: Kyivskyi natsionalnyi universytet imeni Tarasa Shevchenka (130 p.). Otrymano z http://www.csc.knu.ua/uk/library/books/khusainov-17.pdf. [in Ukraine].

Pianka, E. (1973). Evolutionary Ecology. New York: The University of Texas, 224-227 [in English].

Murdie, G. (1971). Department of Zoology and Applied Entomology. London: Imperial College [in English].

Hrod I. M. (2017). Prohnozuvannia chyselnosti okremykh populiatsii v odnii ekolohichnii zoni [Forecasting the number of different populations in one ecological zone]. Kompûterne modelûvannâ: analiz, upravlinnâ, optimizaciâ, no. 1, pp. 9-13. Otrymano z http://kmauo.org/wp-content/uploads/2017/09/Hrod.pdf. [in Ukraine].

Lavryk V. I. (2002). Metody matematychnoho modeliuvannia v ekolohii [Methods of mathematical modeling in ecology]. Kyiv: Vydavnychyi dim «KM Akademiia» (202 p.). [in Ukraine].

Dykhanov S. M. (2009). Matematychne ta kompiuterne modeliuvannia v ekolohii [Mathematical and computer modeling in ecology]. Odesa: Odeska derzhavna akademiia kholodu (104 p.). [in Ukraine].

Chernyshenko S. V. (1985). Matematycheskye metodы v zadachakh optymalnoho uhnetenyia populiatsyi vredytelei pestytsydamy [Mathematical methods in problems of optimal suppression of pest populations by pesticides]. Problemы stepnoho lesnoho khoziaistva y nauchnыe osnovы lesovosstanovlenyia. Dnepropetrovsk: Yzd-vo Dnepropetrovskoho un-ta, pp. 104-110. [in Russian].

Gotelli, N. (2001). A Primer of Ecology. Sunderland: Sinauer Associates.(290 p.) [in English].

Klymenko A. (2021). Matematychni modeli vzaiemodii populiatsii typu khyzhak-zhertva [Mathematical models of predator-prey population interaction]. Otrymano z https://ela.kpi.ua/bitstream/123456789/45272/1/Klymenko_bakalavr.pdf. [in Ukraine].

Romanchuk L. A., Mormul M. F., Shchytov O. M. (2023). Matematychne modeliuvannia vzaiemyn biolohichnykh system z urakhuvanniam smertnosti ta narodzhuvanosti [Mathematical modeling of relationships of biological systems taking into account mortality and birth rates]. The level of development of science and technology in the XXI century ‘2023: Innovative technology, Computer science, Architecture, Physics and mathematics, Medicine, Biology and ecology, Agriculture. Karlsruhe. ScientificWorld-NetAkhat, book 22, part 1, pp. 72-86. [in Ukraine].

Rodriguez, O., Conde, Gutiérrez, R., Hernández–Javier, A. (2020). Modeling and prediction of covid-19 in Mexico applying mathematical and computational models. 5th ed. Chicago, IL: Chaos Solitons Fract (138 p.). DOI: https://doi.org/10.1016/j.chaos.2020.109946 [in English].

Ivanov O. Ya., Vasylenko V. O. (2008). Matematychna model dynamiky chyselnosti populiatsii z urakhuvanniam zminy yemnosti seredovyshcha ta zminy koefitsiientiv pryrostu [Mathematical model of population size dynamics taking into account changes in medium capacity and changes in growth rates]. Fizyka zhyvoho, vol. 16, no. 2, pp. 172-176. [in Ukraine].

Kovalenko I. M. (2007). Prohnozuvannia rozvytku populiatsii roslyn traviano-chaharnychkovoho yarusu v lisovykh fitotsenozakh na osnovi koreliatsiino-rehresyvnoi modeli [Forecasting the development of grass-shrub plant populations in forest phytocenoses based on the correlation-regression model]. Ukrainskyi botanichnyi zhurnal, vol. 64, no. 3, pp. 411-417. Otrymano z http://nbuv.gov.ua/UJRN/UBJ_2007_64_3_10 [in Ukraine].

Melnyk V. I. , Hrytsenko V. V. , Kushnir N. V. , Nehrash Yu. M. (2018). Modeliuvannia introduktsiinykh populiatsii yak metod okhorony ridkisnykh vydiv roslyn ex situ [Modeling of introduced populations as a method of ex situ conservation of rare plant species] / Dopovidi Natsionalnoi akademii nauk Ukrainy, 8, 91-97. DOI: doi.org/10.15407/dopovidi2018.08.091 [in Ukraine].

Lazariev Yu. F. (2007). Modeliuvannia na EOM [Computer modeling]. Kyiv: Korniichuk (290 p.). [in Ukraine].

Tsymbaliuk O. V. ta in. (2005). Kompiuterne modeliuvannia biofizychnykh protsesiv [Computer modeling of biophysical processes]. Kyiv: Intertekhnodruk (130 p.). [in Ukraine].

Kapustian M. S. (2020). Modeliuvannia dynamiky chyselnosti populiatsii z urakhuvanniam zatrymky u chasi [Modeling the dynamics of the number of populations taking into account the time delay]. Otrymano z https://ekmair.ukma.edu.ua/server/api/core/bitstreams/7534f64d-69c0-4d30-83f7-d0585323a153/content. [in Ukraine].

Published

2024-12-30

How to Cite

Shchytov, O., Shchytov, D., Mormul, M., & Romanchuk, L. (2024). MATHEMATICAL MODELING OF THE DYNAMICS OF BIOLOGICAL SYSTEM DEVELOPMENT. European Science, 1(sge35-01), 137–164. https://doi.org/10.30890/2709-2313.2024-35-00-004