МЕТОДИ ІНТЕЛЕКТУАЛЬНОЇ ОБРОБКИ ЗОБРАЖЕНЬ ТА ВІДЕО НА ОСНОВІ МЕТРИК ВІЗУАЛЬНОЇ ЯКОСТІ ДЛЯ ПЕРСПЕКТИВНИХ ЗАСТОСУВАНЬ
DOI:
https://doi.org/10.30890/2709-2313.2023-20-02-010Ключові слова:
Visual quality, combined metrics, remote sensing, 3D printingАнотація
This chapter contains the results obtained during execution of Ukrainian-Polish Project in 2020 intended on design of methods and means for processing grayscale and multichannel images and video using visual quality metrics. The combined metrics have beenMetrics
Посилання
Chang, Chein-I. Hyperspectral Data Exploitation: Theory and Applications / Chein-I Chang // Wiley-Interscience. − 2007. − 440 p.
Foreword to the Special Issue on Hyperspectral Image and Signal Processing
/A. Plaza, J.M. Bioucas-Dias, A. Simic, W.J. Blackwell // IEEE Journal on Selected Topics in Applied Earth Observations and Remote Sensing. − 2012. − Vol. 5, No 2. P. 347-353.
Kussul, N. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data /N. Kussul, G. Lemoine, F.J. Gallego, S.V. Skakun, M. Lavreniuk, A. Shelestov// IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016. No 9. P. 2500–2508. doi:10.1109/JSTARS.2016.2560141.
Khorram, S. Future Trends in Remote Sensing. In Principles of Applied Remote Sensing /S. Khorram, C.F. Van der Wiele, F.H. Koch, S.A.C Nelson, M.D. Potts// Springer International Publishing: Cham, 2016. P. 277–285. ISBN 978-3-319-22559-3.
Marcuccio, S. Smaller Satellites, Larger Constellations: Trends and Design Issues for Earth Observation Systems /S. Marcuccio, S. Ullo, M. Carminati, O. Kanoun// IEEE Aerosp. Electron. Syst. Mag. 2019. No 34. P.50–59. doi:10.1109/ MAES.2019. 2928612.
van Zyl Marais, I. Onboard image quality assessment for a small low earth orbit satellite /van Zyl Marais I., Steyn W.H., du Preez J.A. // In Proceedings of the 7th IAA Symposium on Small Satellites for Earth Observation. Berlin, Germany. 2009. P. Paper IAA B7-0602.
Li, Y. Image deblurring for satellite imagery using small-support-regularized deconvolution /Y. Li, K.C. Clarke // ISPRS J. Photogramm. Remote Sens. 2013. No. 85. P. 148–155. doi:10.1016/j.isprsjprs.2013.08.002.
Xia, H. Remote Sensing Image Deblurring Algorithm Based on WGAN. In Service-Oriented Computing – ICSOC 2018 Workshops / X. Liu, M. Mrissa, Eds // Lecture Notes in Computer Science; Springer International Publishing: Cham. 2019. Vol. 11434. P. 113–125 ISBN 978-3-030-17641-9.
Lukin ,V. Decision Making on Expedience of Image Denoising / V. Lukin. 2020. Glasnik OPN. Podgorica, Montenegro. Issue 24. 22 p.
Christophe, E. Hyperspectral Data Compression Tradeoff / E. Christophe. Optical Remote Sensing. 2011. Berlin: Springer. Vol. 8. P. 9-29.
Approaches to Automatic Data Processing in Hyperspectral Remote Sensing
/V. Lukin, S. Abramov, N. Ponomarenko, S. Krivenko, M. Uss, B. Vozel, K. Chehdi, K. Egiazarian, J. Astola // Telecommunications and Radio Engineering. − 2014. −Vol. 73, No. 13. −P. 1125-1139.
Blanes, I. A Tutorial on Image Compression for Optical Space Imaging Systems /I. Blanes, E. Magli, J. Serra-Sagrista // IEEE Geoscience and Remote Sensing Magazine. 2014. Vol. 2, No. 3. P. 8-26.
Performance evaluation of the H.264/AVC video coding standard for lossy hyperspectral image compression /L. Santos, S. Lopez, G. Callico, J. Lopez, R. Sarmiento // IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.− 2012. − Vol. 5, No. 2. − P. 451–461.
Lukin, V. Lossy compression of images without visible distortions and its applications /Lukin, M. Zriakhov, S. Krivenko, N. Ponomarenko, Z. Miao// Proceedings of ICSP, Beijing. 2010. P. 694-697.
Demchenko, D. A two-step approach to providing a desired quality of lossy compressed images /D. Demchenko, I. Dyogtev, S. Krivenko, V. Lukin// Proceedings of ICTM. Kharkov, Ukraine. 2020. P 482-491.
Ponomarenko, N. Image lossy compression providing a required visual quality / N. Ponomarenko, A. Zemliachenko, V. Lukin, K. Egiazarian, J. Astola// in CD-ROM Proc. of the Seventh International VPQM Workshop. 2013. 6 p.
Li, F. Analysis of two-step approach for compressing texture images with desired quality /F. Li, S.S. Krivenko, V.V. Lukin// Авиационно-космическая техника и технология. – 2020. – № 1 (161). – С. 50-58.
Li, F. A Two-step Approach to Providing a Desired Visual Quality in Image Lossy Compression /F. Li, S.S. Krivenko, V.V. Lukin// Proceedings of TCSET 2020. Feb. 2020. Slavske, Ukraine. 5 p.
Ieremeiev, O. Full-Reference Quality Metric Based on Neural Network to Assess the Visual Quality of Remote Sensing Images /O. Ieremeiev, V. Lukin, K. Okarma, K. Egiazarian // Remote Sensing. July 2020. 31 p. DOI: 10.3390/rs12152349.
Ieremeiev, O. Improved robust linearized full-reference combined metric for remote sensing imaging /O. Ieremeiev. V. Abramova, K. Okarma, K. Egiazarian// Proceedings of 2020 IEEE Ukrainian Microwave Week. September 2020. Kharkov. Ukraine. 6 p.
Okarma, K. Quality Assessment of 3D Printed Surfaces Using Combined Metrics Based on Mutual Structural Similarity Approach Correlated with Subjective Aesthetic Evaluation /K. Okarma, P. Lech, J. Fastowicz, V. Lukin// Applied Sciences. Sept 2020. Vol. 10, No. 18. 6248 p. DOI: 10.3390/app10186248.
Schowengerdt, R. Remote Sensing: Models and Methods for Image Processing /R. Schowengerdt. 3rd ed. San Diego, CA: Academic Press. 2007. 515 p.
Joshi, N. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring / N. Joshi, M. Baumann, et al. // Remote Sensing. 2016, Vol. 8. 70 p.
Zhong, P. Multiple-spectral-band CRFs for denoising junk bands of hyper-spectral imagery /P. Zhong, R. Wang // IEEE Transactions on Geoscience and Remote Sensing. 2013. Vol.51, No. 4. P. 2269–2275.
Abramov, S. Enhancement of Component Images of Multispectral Data by Denoising with Reference /S. Abramov, M. Uss, V. Lukin, B. Vozel et al. //Remote Sensing. 2019. Vol. 11. 611 p.
Zemliachenko, A. Lossy compression of hyperspectral images based on noise parameters estimation and variance stabilizing transform /A. Zemliachenko, R. Kozhemiakin, M. Uss, S. Abramov, N. Ponomarenko, V. Lukin, et al.//Applied Remote Sensing. 2014. Vol. 8, No. 1. 083571 p.
Taubman, D. JPEG2000 Image Compression Fundamentals / D. Taubman, M. Marcellin //Standards and Practice. Springer, Boston: Kluwer. 2002. 777 p., DOI: 10.1007 /978-1-4615-0799-4.
Rubel, O. NN-Based Prediction of Sentinel-1 SAR Image Filtering Efficiency /O. Rubel, V. Lukin, A. Rubel, K. Egiazarian // Geosciences. 2019. Vol. 9, No. 7. 290 p.
Christophe, Emmanuel Quality Criteria Benchmark for Hyperspectral Imagery / Christophe Emmanuel, Leger Dominique, Mailhes Corinne // IEEE Transactions on Geoscience and Remote Sensing. 2005. Vol 43. P. 2103 - 2114.
Dellepiane, Silvana Quality Assessment of Despeckled SAR Images / Dellepiane Silvana, Angiati Elena //IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2014. Vol. 7. P. 691-707.
Lukin, V. Analysis of classification accuracy for pre-filtered multichannel remote sensing data / V. Lukin, S. Abramov, S. Krivenko, A. Kurekin, O. Pogrebnyak // Expert Systems with Applications. 2013. Vol. 40. P. 6400-6411.
Oscar, A. Perceptual Quality Assessment of Pan-Sharpened Images /A. Oscar, Agudelo-Medina, Hernan Dario Benitez-Restrepo, Gemine Vivone, Alan Bovik // Remote Sensing. 2019. Vol. 11, No.7. 877 p.
Moreno-Villamarin, D. Predicting the Quality of Fused Long Wave Infrared and Visible Light Images /D. Moreno-Villamarin, H. Benitez-Restrepo, A. Bovik // IEEE Trans. Image Process. 2017. Vol. 26. P. 3479–3491.
Jagalingam, P. A Review of Quality Metrics for Fused Image / P. Jagalingam, Arkal Vittal Hegde// Aquatic Procedia. 2015. Vol. 4. P. 133-142. https://doi.org/ 10.1016/j.aqpro.2015.02.019.
Yuan, T. A Method for the Evaluation of Image Quality According to the Recognition Effectiveness of Objects in the Optical Remote Sensing Image Using Machine Learning Algorithm /T. Yuan, X. Zheng, X. Hu, W. Zhou, W. Wang// PLoS ONE. 2014. Vol. 9, No. 1. p. e86528.
Yang K. Optimized-SSIM Based Quantization in Optical Remote Sensing Image Compression /K. Yang, H. Jiang// 2011 Sixth International Conference on Image and Graphics. Hefei, Anhui, 2011. P. 117-122.
Reza Khosravi, Mohammad MRF-Based Multispectral Image Fusion Using an Adaptive Approach Based on Edge-Guided Interpolation /Mohammad Reza Khosravi, Mohammad Sharif-Yazd, Mohammad Kazem Moghimi, Ahmad Keshavarz, Habib Rostami, Suleiman Mansouri// Journal of Geographic Information System. 2017. Vol. 9, No. 2. P. 114-125.
Lin, W. Perceptual visual quality metrics: A survey /W. Lin, C. C. Jay Kuo // Journal of Visual Communication and Image Representation. 2011. Vol. 22, No. 4. P. 297-312.
Chandler, D. M. Seven Challenges in Image Quality Assessment: Past, Present, and Future Research /D. M. Chandler ISRN Signal Processing. 2013. Vol. 2013. P. 1-53.
Image database TID2013: Peculiarities, results and perspectives /N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, C.-C. Jay Kuo // Journal of Signal Processing: Image Communication. 2015. Vol. 30. P. 57–77.
Lin, H. KADID-10k: A Large-scale Artificially Distorted IQA Database / H. Lin, V. Hosu, D. Saupe// 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). Berlin, Germany. 2019. P. 1-3.
Sun, W. MDID: a multiply distorted image database for image quality assessment / W. Sun, F. Zhou, Q. M. Liao // Pattern Recognit. 2017. Vol. 61C. P. 153-168.
Okarma, K. Colour Image Quality Assessment Using the Combined Full-reference Metric /K. Okarma. Computer recognition Systems 4, Advances in Intelligent and Soft Computing. 2011. Vol. 95. P. 287-296.
Ieremeiev, O. Robust linearized combined metrics of image visual quality /O. Ieremeiev, V. Lukin, N. Ponomarenko, K. Egiazarian //Electronic Imaging, Image Proc.: Algorithms and Systems XVI. 2018. P. 1-6.
Lukin, V. V. Combining of full-reference image visual quality metrics by neural network /V. V. Lukin, N. N. Ponomarenko, O. I. Ieremeiev, K. O. Egiazarian, J. Astola // Proceedings of SPIE 9394 Human Vision and Electronic Imaging XX. San Francisco. 2015.
List of the full-reference metrics: https://github.com/OlegIeremeiev/IQA/ wiki/ MRRS2020.
Jayaraman, D. Objective Quality Assessment of Multiply Distorted Images /D. Jayaraman, A. Mittal, A. K. Moorthy, A. C. Bovik // Proceedings of Asilomar Conference on Signals, Systems and Computers. 2012.
Wallace, G. K. The JPEG still picture compression standard / G. K. Wallace Commun. ACM. 1991. Vol. 34. P 30–44.
Dellepiane, S.G. Quality Assessment of Despeckled SAR Images /S.G. Dellepiane, E. Angiati // IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014. Vol. 7. P. 691–707.
Ponomarenko, N. N. DCT Based High Quality Image Compression /N. N. Ponomarenko, V. V. Lukin, K. Egiazarian, J. Astola // Proceedings of 14th Scandinavian Conference on Image Analysis. 2005. Vol. 14. P. 1177-1185.
Ponomarenko, N. ADCT: A new high quality DCT based coder for lossy image compression /N. Ponomarenko, V. Lukin, K. Egiazarian, J. Astola // CD ROM Proceedings of LNLA. 2008. 6 p.
Ponomarenko, N. Lossy Compression of Noisy Images Based on Visual Quality: a Comprehensive Study /N. Ponomarenko, S. Krivenko, V. Lukin, K. Egiazarian, J. Astola// EURASIP Journal on Advances in Signal Processing. 2010. Article ID 976436. 13 p.
Rubel, O. NN-Based Prediction of Sentinel-1 SAR Image Filtering Efficiency /O. Rubel, V. Lukin, A. Rubel, K. Egiazarian // Geosciences 2019. Vol. 9. 290 p.
Rubel, O. Blind Prediction of Original Image Quality for Sentinel SAR Data /O. Rubel, A. Rubel, V. Lukin, M. Carli, K. Egiazarian// Proceedings of the 2019 8th European Workshop on Visual Information Processing (EUVIP); IEEE. Rome, Italy, 2019. P. 105–110.
Christophe E. Quality criteria benchmark for hyperspectral imagery /E. Christophe, D. Leger, C. Mailhes // IEEE Transactions on Geoscience and Remote Sensing. − 2005. − Vol. 43, No. 9. − P. 2103-2114.
García-Sobrino, J. Impact of Near-Lossless Compression of IASI L1C data on Statistical Retrieval of Atmospheric Profiles /J. García-Sobrino, I. Blanes, V. Laparra, G. Camps-Valls, J. Serra-Sagristà // Proceedings of the 4th On-Board Payload Data Compression Workshop (OBPDC). Venice, Italy. 2014.
Lukin, V. Analysis of classification accuracy for pre-filtered multichannel remote sensing data /V. Lukin, S. Abramov, S. Krivenko, A. Kurekin, O. Pogrebnyak // Expert Syst. Appl. 2013. Vol. 40. P. 6400–6411. doi:10.1016/j.eswa.2013.05.061.
Hanley, J.A. A method of comparing the areas under receiver operating characteristic curves derived from the same cases /J.A. Hanley, B.J. McNeil// Radiology 1983. Vol. 148. P. 839–843. doi:10.1148/radiology. 148.3.6878708.
Congalton, R.G. Assessing the accuracy of remotely sensed data: principles and practices / R.G. Congalton, K. GreenMapping // Mapping science series; Lewis Publications. Boca Raton, 1999. ISBN 978-0-87371-986-5.
Hou, H. A Super-resolution Reconstruction Method of Remotely Sensed Image Based on Sparse Representation /H. Zhou, H. Gao, X. Tian // Sens. Transducers J. 2013. Vol. 160. P. 229–236.
Aswathy, C. Hyperspectral Image Denoising Using Low Pass Sparse Banded Filter Matrix for Improved Sparsity Based Classification /C. Aswathy, V. Sowmya, K.P. Soman // Procedia Comput. Sci. 2015. Vol. 58. P. 26–33. doi:10.1016/j.procs. 2015.08.005.
Kumar, T.G. Image enhancement and performance evaluation using various filters for IRS-P6 Satellite Liss IV remotely sensed data /T.G. Kumar, D. Murugan, K.; Rajalakshmi, T.I. Manish // Geofizika 2015. P. 179–189. doi:10.15233/gfz.2015.32.11.
Agudelo-Medina, O.A. Perceptual Quality Assessment of Pan-Sharpened Images /O.A. Agudelo-Medina, H.D. Benitez-Restrepo, G. Vivone, A. Bovik // Remote Sens. 2019. Vol. 11. P. 877. doi:10.3390/rs11070877.
Moreno-Villamarin, D.E. Predicting the Quality of Fused Long Wave Infrared and Visible Light Images /D.E. Moreno-Villamarin, H.D. Benitez-Restrepo, A.C. Bovik // IEEE Trans. Image Process. 2017. Vol. 26. P. 3479–3491. doi:10.1109/ TIP.2017.2695898.
Jagalingam, P. A Review of Quality Metrics for Fused Image / P. Jagalingam, A.V. Hegde // Aquat. Procedia. 2015. Vol. 4. P. 133–142. doi:10.1016/j.aqpro. 2015.02.019.
Yuan, T. A Method for the Evaluation of Image Quality According to the Recognition Effectiveness of Objects in the Optical Remote Sensing Image Using Machine Learning Algorithm / T. Yuan, X. Zheng, X. Hu, W. Zhou, W. Wang // PLoS ONE 2014. Vol. 9. e86528 p. doi:10.1371/journal.pone.0086528.
Wang, Z. Image quality assessment: From error visibility to Structural Similarity /Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli// IEEE Trans. Image Process. 2004. Vol. 13. P. 600–612.
Wang, Z. A universal image quality index /Z. Wang, A. Bovik// IEEE Signal Process. Lett. 2002. Vol. 9. P. 81–84.
Guo, J. Image matching using structural similarity and geometric constraint approaches on remote sensing images /J. Guo, F. Yang, H. Tan, J. Wang, Z. Liu// J. Appl. Remote Sens. 2016. Vol. 10. 045007 p. doi:10.1117/1.JRS.10.045007.
Liu, D. No-reference remote sensing image quality assessment based on the region of interest and structural similarity / D. Liu, Y. Li, S. Chen // In Proceedings of the Proceedings of the 2nd International Conference on Advances in Image Processing - ICAIP ’18. ACM Press: Chengdu, China. 2018. P. 64–67.
DCT-based compression of remote sensing images with providing a desired visual quality /S.S. Krivenko, S.K. Abramov, V.V. Lukin, B. Vozel, K. Chehdi // Lossy In Proceedings of the Image and Signal Processing for Remote Sensing XXV; Bruzzone, L., Bovolo, F., Benediktsson, J.A., Eds. SPIE: Strasbourg, France. 2019. p. 36.
Lin, W. Perceptual visual quality metrics: A survey /W. Lin, C.-C. Jay Kuo // J. Vis. Commun. Image Represent. 2011. Vol. 22. P. 297–312. doi:10.1016/j.jvcir. 2011.01.005.
Chandler, D.M. Seven Challenges in Image Quality Assessment: Past, Present, and Future Research / D.M. Chandler ISRN Signal Process. 2013. 2013. P. 1–53. doi:10.1155/2013/905685.
Niu, Y. 2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges / Y. Niu, Y. Zhong, W. Guo, Y. Shi, P. Chen// IEEE Access 2019. Vol. 7. P. 782–801. doi:10.1109/ACCESS.2018.2885818.
Zhai, G. Perceptual image quality assessment: a survey / G. Zhai, X. Min // Sci. China Inf. Sci. 2020. Vol. 63. 211301 p. doi:10.1007/s11432-019-2757-1.
Wang, Z. Multi-scale structural similarity for image quality assessment /Z. Wang, E. P. Simoncelli, A. C. Bovik// IEEE Asilomar Conference on Signals, Systems and Computers. 2003. Vol. 2. P. 1398-1402.
Okarma, K. Combined Full-Reference Image Quality Metric Linearly Correlated with Subjective Assessment. In Artificial Intelligence and Soft Computing; Rutkowski /L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.// Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg. 2010. Vol. 6113. P. 539–546 ISBN 978-3-642-13207-0.
Okarma, K. Extended Hybrid Image Similarity – Combined Full-Reference Image Quality Metric Linearly Correlated with Subjective Scores / Okarma, K. Electron. Electr. Eng. 2013. Vol. 19. P. 129–132. doi:10.5755/j01.eee.19.10.5908.
Bosse, S. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment /S. Bosse, D. Maniry, K.-R. Muller, T. Wiegand, W. Samek // IEEE Trans. Image Process. 2018. Vol. 27. P. 206–219. doi:10.1109/TIP.2017. 2760518.
Bosse, S. A deep neural network for image quality assessment / S. Bosse, D. Maniry, T. Wiegand, W. Samek // Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP). IEEE: Phoenix, AZ, USA. 2016. P. 3773–3777.
Bosse, S. Neural network-based full-reference image quality assessment /S. Bosse, D. Maniry, K.-R. Muller, T. Wiegand, W. Samek // Proceedings of the 2016 Picture Coding Symposium (PCS). IEEE: Nuremberg, Germany. 2016. P. 1–5.
Prashnani, E. PieAPP: Perceptual Image-Error Assessment Through Pairwise Preference /E. Prashnani, H. Cai, Y. Mostofi, P. Sen // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE: Salt Lake City, UT. 2018. P. 1808–1817.
Seo, S. JND-SalCAR: A Novel JND-based Saliency-Channel Attention Residual Network for Image Quality Prediction / S. Seo, S. Ki, M. Kim // ArXiv190205316 Cs 2019.
Athar, S. A Comprehensive Performance Evaluation of Image Quality Assessment Algorithms / S. Athar, Z. Wang // IEEE Access 2019. Vol. 7. P. 140030–140070. doi:10.1109/ACCESS.2019.2943319.
Lukin, V. Analysis of HVS-Metrics’ Properties Using Color Image Database TID2013 /V. Lukin, N. Ponomarenko, K. Egiazarian, J. Astola // Proceedings of ACIVS. October 2015. Italy. P. 613-624.
Tibshirani, R. Regression Shrinkage and Selection Via the Lasso / R. Tibshirani J. R. Stat. Soc. Ser. B Methodol. 1996. Vol. 58. P. 267–288. doi:10.1111/j.2517-6161.1996.tb02080.x.
Efficiency analysis for 3D filtering of multichannel images /R.A. Kozhemiakin, O. Rubel, S.K. Abramov, V.V. Lukin, B. Vozel, K. Chehdi // Bruzzone, L., Bovolo, F., Eds. Edinburgh, United Kingdom. 2016. 1000406 p.
Ponomarenko, N. DCT Based High Quality Image Compression /N. Ponomarenko, V. Lukin, K. Egiazarian, J. Astola// Image Analysis; Kalviainen, H., Parkkinen, J., Kaarna, A., Eds.; Lecture Notes in Computer Science. Springer Berlin Heidelberg: Berlin, Heidelberg. 2005. Vol. 3540. P. 1177–1185. ISBN 978-3-540-26320-3.
Stephens, B. Ultrafine particle emissions from desktop 3D printers. Atmos / B. Stephens, P. Azimi, Z.E. Orch, T. Ramos // Environ. 2013. Vol. 79. P. 334–339.
Azimi, P. Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments /P. Azimi, D. Zhao, C. Pouzet, N.E. Crain, B. Stephens// Environ. Sci. Technol. 2016. Vol. 50. P. 1260–1268.
Fastowicz, J. Objective 3D Printed Surface Quality Assessment Based on Entropy of Depth Maps /J. Fastowicz, M. Grudzinski, M. Tecław, K. Okarma // Entropy 2019. Vol. 21. 97 p.
Okarma, K. Improved quality assessment of colour surfaces for additive manufacturing based on image entropy /K. Okarma, J. Fastowicz // Pattern Anal. Appl. 2020. Vol. 23. P. 1035–1047.
Cheng, Y. Vision-Based Online Process Control in Manufacturing Applications /Y. Cheng, M.A. Jafari // IEEE Trans. Autom. Sci. Eng. 2008. Vol. 5. P. 140–153.
Delli, U. Automated Process Monitoring in 3D Printing Using Supervised Machine Learning / U. Delli, S. Chang // Procedia Manuf. 2018. Vol. 26. P. 865–870.
Szkilnyk, G. Vision Based Fault Detection of Automated Assembly Equipment /G. Szkilnyk, K. Hughes, B. Surgenor// Proceedings of the ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B. Qingdao, China. 15–17 July 2010. ASMEDC: Washington, DC, USA, 2011. Volume 3. P. 691–697.
Chauhan, V. A Comparative Study of Machine Vision Based Methods for Fault Detection in an Automated Assembly Machine /V. Chauhan, B. Surgenor // Procedia Manuf. 2015. Vol. 1. P. 416–428.
Chauhan, V. Fault detection and classification in automated assembly machines using machine vision /V. Chauhan, B. Surgenor // Int. J. Adv. Manuf. Technol. 2017. Vol. 90. P. 2491–2512.
Online defect detection in layered manufacturing using process signature / T. Fang, M.A. Jafari, I. Bakhadyrov, A. Safari, S. Danforth, N. Langrana // Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. San Diego, CA, USA. 14 October 1998. IEEE: Piscataway, NJ, USA. 1998. Volume 5. P.. 4373–4378.
Fang, T. Signature analysis and defect detection in layered manufacturing of ceramic sensors and actuators /T. Fang, M.A. Jafari, S.C. Danforth, A. Safari // Mach. Vis. Appl. 2003. Vol. 15. P. 63–75.
In situ process monitoring in selective laser sintering using optical coherence tomography /M.R. Gardner, A. Lewis, J. Park, A.B. McElroy, A.D. Estrada, S. Fish, J.J. Beaman, T.E. Milner// Opt. Eng. 2018. Vol. 57. 1 p.
Lane, B. Thermographic measurements of the commercial laser powder bed fusion process at NIST / B. Lane, S. Moylan, E.P. Whitenton, L. Ma // Rapid Prototyp. J. 2016. Vol. 22. P. 778–787.
Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D Printed THz Optics /S.F. Busch, M. Weidenbach, M. Fey, F. Schäfer T.,Probst, M. Koch // J. Infrared Millim. Terahertz Waves 2014. Vol. 35. P. 993–997.
Straub, J. Identifying positioning-based attacks against 3D printed objects and the 3D printing process /J. Straub. Pattern Recognition and Tracking XXVIII, Proceedings of the SPIE Defense + Security, Anaheim, CA, USA. 16 June 2017. Alam, M.S., Ed. SPIE: Bellingham, WA, USA. 2017. Volume 10203.
Manufacturing and Security Challenges in 3D Printing / S.E. Zeltmann, N. Gupta, N.G. Tsoutsos, M. Maniatakos, J. Rajendran, R. Karri // JOM 2016. Vol. 68. P. 1872–1881.
Holzmond, O. In situ real time defect detection of 3D printed parts /O. Holzmond, X. Li // Addit. Manuf. 2017. Vol. 17. P. 135–142.
Scime, L. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit / L. Scime, J. Beuth // Manuf. 2018. Vol. 19. P. 114–126.
Tourloukis, G. Data driven approach to quality assessment of 3D printed electronic products /G. Tourloukis, S. Stoyanov, T. Tilford, C. Bailey // Proceedings of the 38th International Spring Seminar on Electronics Technology (ISSE). Eger, Hungary, 6–10 May 2015. IEEE: Piscataway, NJ, USA, 2015. P. 300–305.
Straub, J. Initial Work on the Characterization of Additive Manufacturing (3D Printing) Using Software Image Analysis /J. Straub Machines 2015. Vol. 3. P. 55–71.
Straub, J. An approach to detecting deliberately introduced defects and micro-defects in 3D printed objects /J. Straub In Pattern Recognition and Tracking XXVIII, Proceedings of the SPIE Defense + Security. Anaheim, CA, USA. 16 June 2017. Alam, M.S., Ed. SPIE:Bellingham, WA, USA. 2017. Volume 10203.
Okarma, K. Quality Assessment of 3D Printed Surfaces Using Combined Metrics Based on Mutual Structural Similarity Approach Correlated with Subjective Aesthetic Evaluation /K. Okarma, J. Fastowicz, P. Lech, V. Lukin// Applied Sciences. 2020. Vol. 10. P. 6248.
Combined Full-Reference Image Quality Metric Linearly Correlated with Subjective Assessment /K. Okarma, L. Rutkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada, Eds. // In Artificial Intelligence and Soft Computing, Proceedings of the 10th International Conference Proceedings, ICAISC 2010. Zakopane, Poland. 13–17 June 2010. Springer: Berlin/Heidelberg, Germany, 2010. Volume 6113. P. 539–546.
Sheikh, H. Image information and visual quality /H. Sheikh, A. Bovik// IEEE Trans. Image Process. 2006. Vol. 15. P. 430–444.
Mansouri, A. Image quality assessment using the singular value decomposition theorem /A. Mansouri, A.M. Aznaveh, F. Torkamani-Azar, J.A. Jahanshahi // Opt. Rev. 2009. Vol. 16. P. 49–53.
Okarma, K. Combined image similarity index /Okarma, K. Opt. Rev. 2012. Vol. 19. P. 349–354.
Athar, A Comprehensive Performance Evaluation of Image Quality Assessment Algorithms /S. Athar, Z. Wang // IEEE Access 2019. Vol. 7. P. 140030–140070.
Oszust, M. A Regression-Based Family of Measures for Full-Reference Image Quality Assessment /Oszust, M. Meas. Sci. Rev. 2016. Vol. 16. P. 316–325.
Liu, T.J. Image Quality Assessment UsingMulti-Method Fusion /T.J. Liu, W. Lin, C.C.J. Kuo // IEEE Trans. Image Process. 2013. Vol. 22. P. 1793–1807.
Okarma, K. Application of Structural Similarity Based Metrics for Quality Assessment of 3D Prints /K. Okarma, J. Fastowicz, M. Tecław// In Computer Vision and Graphics, Proceedings of the International Conference, ICCVG 2016. Warsaw, Poland. 19–21 September 2016. L.J. Chmielewski, A. Datta, R. Kozera, K. Wojciechowski, Eds. Springer International Publishing: Cham, Switzerland, 2016. Volume 9972. P. 244–252.
Okarma, K. Adaptation of Full-Reference Image Quality Assessment Methods for Automatic Visual Evaluation of the Surface Quality of 3D Prints /K. Okarma, J. Fastowicz// Elektron. Elektrotechnika 2019. Vol. 25. P. 57–62.
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Автори
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.