ОГЛЯД МОДЕЛЕЙ ПРОГНОЗУВАННЯ ЕНЕРГЕТИКИ ВІТРУ ДЛЯ БАГАТЬОХ ЧАСОВИХ ПЕРІОДІВ

Автор(и)

DOI:

https://doi.org/10.30890/2709-2313.2025-40-02-001

Ключові слова:

wind power, prediction method, multi-time scale, prediction model

Анотація

In pursuit of the global “zero carbon” goal, renewable energy—especially wind power due to its large installed capacity—has gained widespread focus. Accurate wind power forecasting is essential for grid dispatching, unit operation, and wind farm managemen

Metrics

Metrics Loading ...

Посилання

Dancker, J.; Wolter, M. A joined quasi-linear-state power flow calculation for integrated energy systems. IEEE Access 2022, 10, 33586–33601. https://doi.org/10.1109/ACCESS.2022.3161961.

National Energy Administration Releases National Electric Power Industry Statistics for January–September 2024. Available online: https://www.gov.cn/lianbo/bumen/202410/content_6981841.htm

Gilbert, C.; Browell, J.; Mcmillan, D. Leveraging turbine-level data for improved probabilistic wind power forecasting. IEEE Trans. Sustain. Energy 2020, 11, 1152–1160

Andrade, J.R.; Bessa, R.J. Improving renewable energy forecasting with a grid of numerical weather predictions. IEEE Trans. Sustain. Energy 2017, 8, 1571–1580.

Vladislavleva, E.; Friedrich, T.; Neumann, F.; Wagner, M. Predicting the energy output of wind farms based on weather data: Important variables and their correlation. Renew. Energy 2013, 50, 236–243.

Park, S.; Jung, S.; Lee, J.; Hur, J. A short-term forecasting of wind power outputs based on gradient boosting regression tree algorithms. Energies 2023, 16, 1132.

Hossain, M.A.; Chakrabortty, R.K.; Elsawah, S.D.; Ryan, M.J. Very short-term forecasting of wind power generation using hybrid deep learning model. J. Clean. Prod. 2021, 296, 126564.

Bezerra, E.C.; Pinson, P.; Leao, R.P.S.; Braga, A.P.S. A Self-Adaptive Multikernel Machine Based on Recursive Least-Squares Applied to Very Short-Term Wind Power Forecasting. IEEE Access 2021, 9, 104761–104772.

Jalali, S.M.J.; Osorio, G.J.; Ahmadian, S.; Lotfi, M.; Campos, V.M.A.; Shafie-Khah, M.; Khosravi, A.; Catalao, J.P.S. New Hybrid Deep Neural Architectural Search-Based Ensemble Reinforcement Learning Strategy forWind Power Forecasting. IEEE Trans. Ind. Appl. 2022, 58, 15–27.

Cadenas, E.; Rivera, W. Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks. Renew. Energy 2009, 34, 274–278.

Bradford, K.T.; Carpenter, R.L.; Shaw, B.L. Forecasting southern plains wind ramp events using the WRF model at 3km. In Proceedings of the Ninth Annual Student Conference, Atlanta, GA, USA, 17 January 2010

Опубліковано

2025-05-30

Як цитувати

Мисак, П., & Мисак, І. (2025). ОГЛЯД МОДЕЛЕЙ ПРОГНОЗУВАННЯ ЕНЕРГЕТИКИ ВІТРУ ДЛЯ БАГАТЬОХ ЧАСОВИХ ПЕРІОДІВ. European Science, 2(sge40-02), 10–21. https://doi.org/10.30890/2709-2313.2025-40-02-001

Статті цього автора (авторів), які найбільше читають

1 2 3 > >>