CURRENT STATE OF DEVICES FOR MEASURING PHYSICAL QUANTITIES
DOI:
https://doi.org/10.30890/2709-2313.2025-41-07-007Ключові слова:
devices for measuring physical quantities, wireless sensor networks, monitoring and control systems, temperature sensors, magnetic field sensors, gas concentration sensorsАнотація
The paper analyzes publications devoted to theoretical and experimental research of radio-technical devices for measuring physical quantities in wireless sensor networks of control and management systems, showing that the creation of radio-technical deviMetrics
Посилання
Majid M, Habib S, Javed AR, Rizwan M, Srivastava G, Gadekallu TR, Lin JC-W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors. 2022; 22(6):2087.
P.S. Pandey, D.E. Chaitanya, V.K. Minchula, V. Premchandran, T. Keerthika. IoT-Enabled Wireless Sensor Networks for Controlled and Safe Routing // International Journal of Aquatic Science. Vol 12, Issue 02, 2021
F. Al-Turjman. Intelligence and Security in Big 5G-oriented IoNT: An Overview// Elsevier Future Generation Computer Systems, vol. 102, no. 1, pp. 357-368, 2020.
Yun Zhou et al. Securing Wireless Sensor Networks: A Survey // IEEE Communication Surveys, Volume 10, No.3, 2008.
L. Wang and R. Jones. Big Data Analytics for Network Intrusion Detection: A Survey // International Journal of Networks and Communications, vol. 7, no. 1, pp. 24– 31, 2017.
Ahmad W., Rasool A., Javed D., Baker A.R.T., Jalil Z. Cyber Security in IoT-Based Cloud Computing: A Comprehensive Survey // Electronics 2022, 11, 16.
Kumar R., Kumar P., Srivastava G., Gupta G.P., Tripathi R., Gadekallu T.R., Xiong N.N. PPSF: A privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities // IEEE Trans. Netw. Sci. Eng. 2021, 8, 2326–2341.
Ambika Nagaraj. Introduction to Sensors in IoT and Cloud Computing Applications. Bangalore,India. 2021. –520 p.
Lei Hang, Wenquan Jin, HyeonSik Yoon, Yong Geun Hong and Do Hyeun Kim. Design and Implementation of a Sensor-Cloud Platform for Physical Sensor Management on CoT Environments// Electronics 2018, 7, 140; –P.1-25.
Neto M., Ribeiro P., Nunes R., Jamone L., Bernardino A., Cardoso S. A Soft Tactile Sensor Based on Magnetics and Hybrid Flexible-Rigid Electronics. Sensors 2021, 21, 5098. –P.1-25.
Muneeba N., Javed A.R., Tariq M.A., Asim M., Baker T. Feature engineering and deep learning-based intrusion detection framework for securing edge IoT // J. Super Comput. 2022, 1–15.
Ismail S, Dawoud DW, Reza H. Securing Wireless Sensor Networks Using Machine Learning and Blockchain: A Review // Future Internet. 2023; 15(6):200.
Bajaj K., Sharma B., Singh R. Integration of WSN with IoT applications: A vision, architecture, and future challenges. In Integration of WSN and IoT for Smart Cities // Springer: Berlin/Heidelberg, Germany, 2020; pp. 79–102.
Мікроелектронні сенсори фізичних величин: В 3-ох т. / В. Вуйцік, З. Готра, О. Готра та інш.; Львів: Ліга-Прес, 2003. – 595 с.
Інтелектуальні вимірювальні системи на основі мікроелектронних датчиків нового покоління / Я. І. Лепіх, Ю. О. Гордієнко, С. В. Дзядевич [та ін.] ; за ред. Я. І. Лепіха, В. О. Романова. – Одеса : Астропринт, 2011. – 352 с.
Невлюдов І.Ш. Автоматичне управління технологічними об’єктами / І.Ш. Невлюдов, О.В. Токарєва. – Київ : НАУ, 2018. – 200 с.
Бурий О. А. Сенсори газів на наноструктурах: сучасний стан та перспективи досліджень / О. А. Бурий, С. Б. Убізський // Вісник Національного університету «Львівська політехніка». Серія: Радіоелектроніка та телекомунікації. — Львів : Видавництво Львівської політехніки, 2017. — № 885. — С. 113–131.
Готра З. Ю. Сенсорні пристрої магнітного поля на структурах інтегральних магнітотранзисторів / З. Ю. Готра, Р. Л. Голяка, І. М. Годинюк, Т. А. Марусенкова, В. Ю. Ільканич // Науковий вісник Чернівецького університету. Фізика, електроніка. - 2011. - Т. 1, Вип. 2. - С. 19-26.
Osadchuk A.V., Osadchuk V.S., Osadchuk I.A. Research on a magnetic field sensor with a frequency output signal based on a tunnel-resonance diode // Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska. IAPGOS, 4/2020, –P.51–56.
Landaluce H., Arjona L., Perallos A., Falcone F., Angulo I., Muralter F. A review of iot sensing applications and challenges using RFID and wireless sensor networks // J. Sens. 2020, 20, 1–18.
A. N. Ansari, M. Sedky, N. Sharma, and A. Tyagi. n Internet of things approach for motion detection using Raspberry Pi // Proc. Of 2015 International Conference on Intelligent Computing and Internet of Things, IEEE, pp. 131-134, 2015.
S. Zafar, G. Miraj, R. Baloch, D. Murtaza, and K. Arshad. An IoT Based Real-Time Environmental Monitoring System Using Arduino and Cloud Service // Engineering, Technology & Applied Science Research, Vol. 8, No. 4, 2018, pp. 3238-3242.
N. Nayyar V. Puri. Smart farming: IoT based smart sensors agriculture stick for live temperature and moisture monitoring using Arduino, cloud computing & solar technology //Proc. of The International Conference on Communication and Computing Systems (ICCCS-2016), 2016.
R. Deekshath, P. Dharanya, K. R. D. Kabadia, G. D. Dinakaran and S.Shanthini, IoT Based Environmental Monitoring System using Arduino UNO and Thingspeak // IJSTE - International Journal of Science Technology & Engineering, Vol. 4, No. 9, 2018.
D. Pavithra, and R. Balakrishnan. IoT based monitoring and control system for home automation // Proc. of 2015 global conference on communication technologies (GCCT), IEEE, pp. 169-173, 2015.
A. Singh, P. Aggarwal, R. Arora. IoT based waste collection system using infrared sensors // Proc. of 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), IEEE, pp. 505-509, 2016.
P. Patil. Smart IoT Based System For Vehicle Noise And Pollution Monitoring Piyush //Proc. of International Conference on Trends in Electronics and Informatics, 2017, pp. 322–326.
M. T. Lazarescu. Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications // IEEE J. Emerg. Sel. Top. CIRCUITS Syst., vol. 3, pp. 45–54, 2013.
Souri K., Chae Y., Makinwa K.A.A. A CMOS Temperature Sensor with a Voltage-Calibrated Inaccuracy of 0.15 C from -55 C to 125 C // IEEE J. Solid-State Circuits 2013, 48, 292–301.
Souri K., Chae Y., Thus F., Makinwa K. 12.7 A 0.85V 600nW All-CMOS Temperature Sensor with an Inaccuracy of ±0.4 °C from -40 to 125 °C // Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; IEEE: San Francisco, CA, USA, 2014; pp. 222–223.
Xu Z., Zhang X., Chen S., Cheong J., Yao L. A Temperature-to-Frequency Converter-Based On-Chip Temperature Sensor with an Inaccuracy of +0.65 °C/−0.49 °C // Sensors. 2023; 23(11):5169.
Yousefzadeh B., Makinwa K.A.A. A BJT-Based Temperature-to-Digital Converter With a _0.25 _C 3_ -Inaccuracy from -40 C to +180 C Using Heater-Assisted Voltage Calibration // IEEE J. Solid-State Circuits 2019, 55, 369–377.
Khan Y., Ostfeld A.E., Lochner C.M., Pierre A., Arias A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices // Adv. Mater. 2016, 28, 4373–4395.
Zini M, Baù M, Nastro A, Ferrari M, Ferrari V. Flexible Passive Sensor Patch with Contactless Readout for Measurement of Human Body Temperature // Biosensors. 2023; 13(6):572.
Sergey Y. Yurish. Smart and Intelligent Optoelectronic Sensor Systems:OEM Design Approach // The Second International Conference on Sensor Device Technologies and Applications. IARIA, 2011. -P.38-43.
S.Y. Yurish, “Novel Modified Method of the Dependent Count for High Precision and Fast Measure-ments of Frequency-Time Parameters of Electric Signals”, Proc. Of 2008 IEEE International Instru-mentation & Measurement Technology Conference - I2MTC, Victoria, Vancouver Island, British Co-lumbia, Canada, 12-15 May 2008, pp. 876-881.
Light-to-frequency Converter Photo IC S9705, Hamamatsu,2007.
Oleksandr Malik, F. Javier De la Hidalga-W, Carlos Z´u˜niga-I. Digital output silicon optical sensors //Sensors and Actuators A 142 (2008) 196–202
Maekawa T, Kanaya H, Suzuki S, Asada M. Oscillation up to 1.92 THz in resonant tunnelling diode by reduced conduction loss // Appl Phys Express. 2016;9(2):024101.
Weikang Zhang, Scott Watson, José Figueiredo, Jue Wang, Horacio I. Cantú, Joana Tavares, Luis Pessoa, Abdullah Al-Khalidi, Henrique Salgado, Edward Wasige, and Anthony E. Kelly, "Optical direct intensity modulation of a 79GHz resonant tunneling diode-photodetector oscillator // Opt. Express 27, 16791-16797 (2019).
M. J. Thompson and D. A. Horsley, "Resonant MEMS magnetometer with capacitive read-out," SENSORS, 2009 IEEE, Christchurch, New Zealand, 2009, pp. 992-995, doi: 10.1109/ICSENS.2009.5398216.
Thierry Leichle, Arx Martin, Reiman Stephen, Zana Iulica, Ye Wenjing, Allen Mark. (2004). A low-power resonant micromachined compass // Journal of Micromechanics and Microengineering. 14. 462. 10.1088/0960-1317/14/4/005.
Burdin DA, Chashin DV, Ekonomov NA, Fetisov LY, Preobrazhensky VL, Fetisov YK. Low-Frequency Resonant Magnetoelectric Effects in Layered Heterostructures Antiferromagnet-Piezoelectric. Sensors. 2023; 23(13):5901.
Fetisov, L.Y.; Burdin, D.A.; Ekonomov, N.A.; Chashin, D.V.; Zhang, J.; Srinivasan, G.; Fetisov, Y.K. Nonlinear magnetoelectric effects at high magnetic field amplitudes in composite multiferroics. J. Phys. D Appl. Phys. 2018, 51, 15400321.
J. Lenz and S. Edelstein, "Magnetic sensors and their applications," in IEEE Sensors Journal, vol. 6, no. 3, pp. 631-649, June 2006, doi: 10.1109/JSEN.2006.874493.
Tucker, J.; Wesoleck, D.; Wickenden, D. An integrated CMOS MEMS xylophone magnetometer with capacitive sense electronics. In 2000 NanoTech, Houston, Texas, USA, 9-12 September 2000, AIAA 2002-5723.
Randjelovic, Z.B.; Kayal, M.; Popovic, R.; Blanchard, H. Highly sensitive Hall magnetic sensor microsystem in CMOS technology. IEEE J. Solid-State Circ. 2002, 37, 151-159
Clevenson, H.; Pham, L.M.; Teale, C.; Johnson, K.; Englund, D.; Braje, D. Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 2018, 112, 252406.
Zaky, Z.A.; Sharma, A.; Aly, A.H. Gyroidal graphene for exciting tamm plasmon polariton as refractive index sensor: Theoretical study. Opt. Mater. 2021, 122, 111684.
Bertuccelli, Fabrizio & Colonna, Annamaria & Malik, Westy & Ranasinghe, Damith & López, Tomas. (2008). Sensor-enabled RFID tag handbook.
Kevin Lauer, Geert Brokmann, Mario Bähr, Thomas Ortlepp; Determination of piezo-resistive coefficient π44 in p-type silicon by comparing simulation and
Pavlin M, Belavic D, Novak F. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment. Sensors. 2012; 12(1):320-333.
R. E. Oosterbroek et al., “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol., vol. 12, no. 5, pp. 450–454, 2006.
DeMartini, B.E.; Rhoads, J.F.; Zielke, M.A.; Owen, K.G.; Shaw, S.W.; Turner, K.L. A single input-single output coupled microresonator array for the detection and identification of multiple analytes. Appl. Phys. Lett. 2008, 93, 1–4.
Ren, L.; Yu, K.; Tan, Y. Monitoring and Assessing the Degradation Rate of Magnesium-Based Artificial Bone In Vitro Using a Wireless Magnetoelastic Sensor. Sensors 2018, 18, 3066.
Kim, N.I.; Chang, Y.L.; Chen, J.; Barbee, T.; Wang, W.; Kim, J.-Y.; Kwon, M.-K.; Shervin, S.; Moradnia, M.; Pouladi, S.; et al. Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications. Sens. Actuators A Phys. 2020, 305, 111940.
Yang L, Kou H, Wang X, Zhang X, Shang Z, Shi J, Zhang G, Gui Z. A Microwave Pressure Sensor Loaded with Complementary Split Ring Resonator for High-Temperature Applications. Micromachines. 2023; 14(3):635.
J.D. Albrecht, L.Cong, P.P. Ruden, M.I. Nathan, and D.L. Smith, “Resonant tunneling in (001)- and (111)-oriented III-V double barrier heterostructures under transverse and longitudinal stresses,” J. Appl. Phys., vol. 79, no. 10, pp.7763-7769, May 1996.
Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors 2014, 14, 7881–7939.
Liu, M.Q.;Wang, C.; Kim, N.Y. High-sensitivity and low-hysteresis porous mim-type capacitive humidity sensor using functional polymer mixed with TiO2 microparticles. Sensors 2017, 17, 284.
Liu H, Wang Q, Sheng W, Wang X, Zhang K, Du L, Zhou J. Humidity Sensors with Shielding Electrode Under Interdigitated Electrode. Sensors. 2019; 19(3):659.
Zabolotnyi O, Zabolotnyi V, Koshevoy N. Capacitive Water-Cut Meter with Robust Near-Linear Transfer Function. Computation. 2022; 10(7):115.
Delipınar Tuğçe, Shafique Atia, Gohar Maryam, Yapici, Murat. (2021). Fabrication and Materials Integration of Flexible Humidity Sensors for Emerging Applications. ACS Omega. XXXX. 10.1021/acsomega.0c06106.
Galka AG, Kostrov AV, Priver SE, Strikovskiy AV, Parshin VV, Serov EA, Nikolenko AS, Korobkov SV, Gushchin ME. Microwave Cavity Sensor for Measurements of Air Humidity under Reduced Pressure. Sensors. 2023; 23(3):1498.
Lee, J.-H.; Kim, J.-H.; Kim, J.-Y.; Mirzaei, A.; Kim, H.W.; Kim, S.S. ppb-Level Selective Hydrogen Gas Detection of Pd- Functionalized In2O3-Loaded ZnO Nanofiber Gas Sensors. Sensors 2019, 19, 4276.
Du, L.; Feng, D.; Xing, X.; Fu, Y.; Fonseca, L.F.; Yang, D. Palladium/cobalt nanowires with improved hydrogen sensing stability at ultra-low temperatures. Nanoscale 2019, 11, 21074–21080.
Wang, D.; Yang, J.; Bao, L.; Cheng, Y.; Tian, L.; Ma, Q.; Xu, J.; Li, H.-J.; Wang, X. Pd nanocrystal sensitization two-dimension porous TiO2 for instantaneous and high efficient H2 detection. J. Colloid Interface Sci. 2021, 597, 29–38.
Q. Chen, S. Yu, R. Sun and S. Xie, "Preparation and dielectric properties of BaTiO3@PANI filled PVDF composites," 2013 14th International Conference on Electronic Packaging Technology, Dalian, China, 2013, pp. 351-355, doi: 10.1109/ICEPT.2013.6756487.
Shen, C.Y.; Huang, C.P.; Huang, W.T. Gas-detecting properties of surface acoustic wave ammonia sensors. Sens. Actuators B Chem. 2004, 101, 1–7.
Wang, B.; Zheng, L.; Zhou, L. Surface acoustic wave sensors with Graphene/PANI nanocomposites for nitric oxide detection. IOP Conf. Ser. Earth. Environ. Sci. 2017, 100, 012044.
Jun, J.; Oh, J.; Shin, D.H.; Kim, S.G.; Lee, J.S.; Kim, W.; Jang, J. Wireless, Room Temperature Volatile Organic Compound Sensor Based on Polypyrrole Nanoparticle Immobilized Ultrahigh Frequency Radio Frequency Identification Tag. ACS Appl. Mater. Interfaces 2016, 8, 33139–33147.
Lee, Y.; Kim, B.; Lee, H.; Hong, Y.; Yook, J.; Choi, H.H.; Lee, S.H.; Lee, J.J. A reflection type gas sensor using conducting polymer as a variable impedance at microwave frequencies. In Proceedings of the 2014 IEEE SENSORS, Valencia, Spain, 2–5 November 2014; pp. 1819–1822.
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Автори

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.