GPU STREAM PROCESSING

Authors

DOI:

https://doi.org/10.30890/2709-2313.2024-35-00-037

Keywords:

organization of threads in GPU, features of working with memory, synchronization technologies, implementation of conditional constructs, development of streaming information processing in rendering

Abstract

The organization of threads in the GPU, features of working with memory, synchronization technologies, implementation of conditional constructs, development of streaming information processing in rendering are considered.

Metrics

PDF views
1

References

ScienceDirect. “Thread Level Parallelism – an overview.” Date of access: 25 Dec. 2024. [Online]. Available: https://www.sciencedirect.com/topics/computer-science/thread-level-parallelism

Wikipedia. “Instruction-level parallelism.” Retrieved 25 Dec. 2024. [Online]. Available: https://en.wikipedia.org/wiki/Instruction-level_parallelism

Codecademy. “Computer Architecture: Data-Level Parallelism Cheatsheet.” Retrieved 25 Dec. 2024. [Online]. Available at: https://www.codecademy.com/learn/computer-architecture/modules/data-level-parallelism/cheatsheet

Wikipedia. “SIMD.” Retrieved 25 Dec. 2024. [Online]. Available: https://uk.wikipedia.org/wiki/SIMD

Wikipedia. “Single instruction, multiple threads.” Retrieved 25 Dec. 2024. [Online]. Available: https://en.wikipedia.org/wiki/Single_instruction,_multiple_threads

Wikipedia. “MIMD.” Retrieved 25 Dec. 2024. [Online]. Available: https://uk.wikipedia.org/wiki/MIMD

ScienceDirect. “Memory Access Coalescing - an overview.” Retrieved 25 Dec. 2024. [Online]. Available: https://www.sciencedirect.com/topics/computer-science/memory-access-coalescing

ScienceDirect. “Thread Divergence - an overview.” Accessed 25 Dec. 2024. [Online]. Available: https://www.sciencedirect.com/topics/computer-science/thread-divergence

Wikipedia. “Three-dimensional integrated circuit.” Retrieved 25 Dec. 2024. [Online]. Available: https://en.wikipedia.org/wiki/Three-dimensional_integrated_circuit

Wikipedia. “DirectX.” Retrieved 25 Dec. 2024. [Online]. Available: https://en.wikipedia.org/wiki/DirectX

Wikipedia. “Vulkan (API).” Retrieved 25 Dec. 2024. [Online]. Available: https://uk.wikipedia.org/wiki/Vulkan_(API)

Wikipedia. “CUDA.” Retrieved 25 Dec. 2024. [Online]. Available: https://uk.wikipedia.org/wiki/CUDA

Wikipedia. “OpenCL.” Retrieved 25 Dec. 2024. [Online]. Available: https://uk.wikipedia.org/wiki/OpenCL

Романюк О. Н., Майданюк В. П., Бобко О. Л., Тітова Н. В., Романюк С. О. Використанням GPU для розпаралелення рендерингу. Advanced top technology. Елетрон. текст. дані. 2024. № 3. С. 46-48.

Vyatkin S.I., Romanyuk O.N., Chekhmestruk R.Y., Romanyuk S.O., Romanyuk O.V. Comparison of Volume Rendering Methods Using GPU and Specialized Volumetric Accelerator. (2021) Lecture Notes in Networks and Systems, 212 LNNS, pp. 359 – 378

Romanyuk Oleksandr Nykyforovych, Bobko Oleksii Leonidovych,Zavalniuk Yevhen Kostyantynovych,Titova Nataliia Volodymyrivna, Romanyuk Serhii Oleksandrovych,Stakhov Oleksii Yaroslavovych. IANALYSIS OF GRAPHICS PIPELINES. Іnnovation in der modernen Wissenschaft: Innovative Technologie, Informatik, Sicherheitssysteme, Verkehrsentwicklung, Architektur und Bauwesen, Physik und Mathematik. Monografische Reihe «Europäische Wissenschaft». Buch 30. Teil 1. 2024, pp.71-80 .

Published

2024-12-30

How to Cite

Romanyuk, S., Romanyuk, O., Shenshin, O., Bobko, O., & Titova, N. (2024). GPU STREAM PROCESSING. European Science, 1(sge35-01), 119–126. https://doi.org/10.30890/2709-2313.2024-35-00-037